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Abstract

Given an integer N > 2 and a real number 8 > 1, let I'g » be the set of
all x = Zfil d;/B' withd; € {0,1,---,N — 1} for all i > 1. The infinite
sequence (d;) is called a B-expansion of x. Let U g y be the setof all x’sinI'g v
which have unique B-expansions. We give explicit formula of the Hausdorff
dimension of Ug y for B in any admissible interval [B;, By, where B is a
purely Parry number while Sy is a transcendental number whose quasi-greedy
expansion of 1 is related to the classical Thue-Morse sequence. This allows
us to calculate the Hausdorff dimension of Ug y for almost every g > 1.
In particular, this improves the main results of Gabor Kallds (1999, 2001).
Moreover, we find that the dimension function f(B8) = dimy Upg y fluctuates
frequently for 8 € (1, N).

Keywords: unique beta expansion, Hausdorff dimension, generalized Thue—
Morse sequence, admissible block, admissible interval, transcendental number
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(Some figures may appear in colour only in the online journal)

1. Introduction
Given an integer N > 2 and a real number § > 1, we call the infinite sequence (d;) a

B-expansion of x if we can write

[e¢]
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withd; € {0,1,---, N — 1} foralli > 1. Let I'g y be the set of all such x’s, i.e.,

Tpy = {Zﬁ— cd € {01, N—1},i > 1}.
i=1
Then I'g y is a self-similar set generated by the iterated function systems (IFS) {fq(x) =
x+d)/p :d e {0,1,---,N — 1}} (see [16]). Let {0,1,---, N — 1}*° be the set of all
expansions (d;) with each digitd; € {0, 1, ---, N —1}. We define the projection map I1g from
{0,1,---, N = 1}*toI'g y by
o0

Hp(@d) = ) - ey

When 8 > N,the IFS {f;(-) : d € {0, 1, - - -, N — 1}} satisfies the strong separation condition
(SSC), and then the map Il is bijective which implies that every point in I'g 5 has a unique
B-expansion. When 8 = N, the IFS {f;(-) : d € {0, 1, - - -, N — 1}} fails the SSC but satisfies
the open set condition (OSC). Then all except for countably many points in I'g y have unique
B-expansions.

However, when § < N, the IFS {f;() : d € {0,1,.--, N — 1}} fails the OSC. In
this case, I'g y = [0, (N — 1)/(B — 1)] and almost every point in I'g 5 have continuum of
B-expansions (see [9,33,35]). This has close connections to representations of real numbers
in non-integer bases. After the seminal works of Rényi [31] and Parry [29] B-expansions were
widely considered from many aspects of mathematics, such as dynamical systems, measure
theory, probability, number theory and so on (see [10, 13,15,17,30,32,34,36]).

In 1990 Erdos, Joé and Komornik [15] showed for N = 2 that for 8 € (1, G) any internal
point of I'g y has continuum of B-expansions, and for 8 € (G, 2) there exist infinitely many
points of I'g 5 having unique S-expansions (see [18]), where G = (1 + V/5)/2 is the golden
ratio. Recently, Baker [7] generalized their result and showed for N > 2 that there exists
Gy € (1, N) defined by

k+1 if N=2k+1,

Gn = k+ViZ+4k @)
N % if N = 2k,

such that for each 8 € (1, Gy) any internal point of I'g y has continuum of B-expansions,
and for B € (Gy, N) there exist infinitely many points in I'g y having unique B-expansions
(see [25]).

LetUyg y bethesetofallx’sinI'g y which have unique B-expansions, i.e. foranyx € Up y
there exists a unique sequence (d;) € {0, 1,---, N — 1}*° such that x = ) _;°, d;/B'. When
B € (1, N), the structure of Ug y is complex (see [11-13, 18,20, 21, 24]). Recently, De Vries
and Komornik [13] showed that there exists 8.(N) € (G y, N) such that (see also [14,18,25])

o if B € (Gy, B:(N)), then |Up y| = Ro;
o if B = B.(N), then dimy Ug y = 0 but |Up | = 2™,
o if f € (B:(N),N),then0 < dimy Uy < 1.

Here B.(N) is the Komornik—Loreti constant defined as the unique positive solution of the
equation 1 = Zfi] Xi/B, where (A;) = (A;(N)) is given by (see [23])

k—1+7 if N =2k,
k+'L'i—‘L',',1 lfN:2k+1,
with (7;){2,, the classical Thue-Morse sequence starting at (see [4])

01101001 10010110~ - -.

Ai(N) = { 3)
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Figure 1. The Hausdorff dimension of Uyg o for B € (1, 110) (left column), and for 8
in the one-level and two-level admissible intervals in (8.(10), 10) ~ (5.976, 10) (right
column).

Allouche and Cosnard [2] showed that B.(2) is a transcendental number. Later, Komornik and
Loreti [23] showed that 8.(N) is transcendental for any N > 2.

The purpose of this paper is to investigate the Hausdorff dimension of Ug y. From the
above observation it follows that

o if B € (1, B:(N)], then dimy U y = 0;
e if B € [N, 00), thendimy Ug y = dimy I'g y = log N/log B.

However, when 8 € (B.(N), N) we know little about the Hausdorff dimension of Ug y.
When N = 2, Dar6czy and Katai [12] gave a method to calculate the Hausdorff dimension
of Ug y only if B is a purely Parry number. When N > 2, Kallés [20] showed that when
B €[N —1,(N—1++/N?—2N +5)/2] the Hausdorff dimension of Uy y is given by
dimy Ug y = log(N — 2)/log B. Later in [21] he investigated the Hausdorff dimension of
UgnforBe[(N—1++ N2 —2N +5)/2, N), and gave a method to calculate its Hausdorff
dimension when g is a purely Parry number.

In this paper we improve the main results of Kallds [20,21]. In theorem 2.6 we give the
Hausdorff dimension of Uy y for B in any admissible interval [B;, By ], where B is a purely
Parry number while Sy is a transcendental number. Moreover, we show in theorem 2.5 that all
of these admissible intervals cover almost every point of (8.(N), N). Therefore, we are able
to calculate the Hausdorff dimension of Ug y for almost every 8 > 1. In particular, we give
explicit formula for the Hausdorff dimension of Ug y when f is in any one-level or two-level
admissible intervals [B, By] (see theorems 7.1 and 7.2 for more explanation).

Example 1.1. Let N = 10. By theorem 7.1, theorem 7.2 and the above observation we plot
in figure 1 that the graph of the dimension function f(B) = dimpy Ug o for B € (1,110).
In particular, we give a detailed plot of f(B) for B in the one-level and two-level admissible
intervals in (B.(10),10) =~ (5.976, 10). Clearly, the dimension function f(B) fluctuates
frequently for B € (B.(10), 10). In [22] we will show that f(B) is continuous for f > 1.

The structure of the paper is arranged as follows. In section 2 we introduce the admissible
blocks, admissible intervals and the generalized Thue—-Morse sequences, and state our main
results as in theorems 2.3, 2.5 and 2.6. In section 3 we presented some properties of unique
beta expansions. The proofs of theorems 2.3, 2.5 and 2.6 are given in sections 4, 5 and 6,
respectively. In section 7 we consider some examples for which the Hausdorff dimension of
Up, y can be calculated explicitly.
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2. Preliminary and main results

Given an integer N > 2, for any 8 € (1, N) the set I'g y is a closed interval, i.e.
g,y =10, (N —1)/(B — 1)]. Then any real number in this interval I'g y has a B-expansion,
some of them may have multiple B-expansions. Among these expansions we define the
so-called greedy B-expansion (b;(x)) = (b;) of x € I'g y recursively as follows (see [29]).
For x € I'g v, if b; has already been defined for 1 < i < n (no condition if n = 1), then b, is

the largest element in {0, 1, ---, N — 1} satisfying
by b b,
—t ot
B B B

One can verify that (;) is indeed a S-expansion of x. Moreover, (b;) is the largest f-expansion
of x in the sense of lexicographical order among all B-expansions of x.

Accordingly, we define the so-called quasi-greedy B-expansion (a;(x)) = (a;) of x € I'g i
recursively as follows (see [13]). For x = 0 we set (a;) = 0. For x € I'g v \ {0}, if a; has
already been defined for 1 < i < n (no condition if n = 1), then a, is the largest element in
{0,1,---, N — 1} satisfying

a @ An

E+§+---+ﬁ < x.
One can also verify that (@;) is indeed a B-expansion of x. Clearly, the quasi-greedy
B-expansion of x is the largest infinite S-expansion of x in the sense of lexicographical order
among all B-expansions of x. Here we call a S-expansion infinite if the expansion has infinitely
many non-zero elements.

For a positive integer p let {0,1,---, N — 1}” be the set of blocks ¢; --- ¢, of length
p with each element ¢; € {0,1,---, N — 1}. For two blocks c¢;---c, and d; ---d, let
cr---cpdi---dy € {0,1,---, N — 1}P* denote their concatenation. In particular, let
(c1--- c,,)k denote the k times concatenations of ¢ - - - ¢, to itself, and let (c; - - - ¢,)> denote
the infinite concatenations of ¢; - - - ¢, to itself. For a digitc € {0, 1, ---, N — 1} its reflection
¢ is defined by

c=N-1-—c.

Accordingly, if ¢; € {0,1,---, N — 1} for i > 1, we shall also write ¢; - - - ¢, instead of
€+ Cy,and ¢icy - - - instead of ¢y ¢; - - . Finally, for a block ¢ ---¢c, € {0,1,---, N — 1}

with ¢, > 0 we set

Cre-c, = cr-cp_t(cp —1).

Similarly, for a block ¢y ---¢, € {0,1,---, N — 1}/ withc, < N — 1 we set

cl-uc; i=cp-cpilcp +1).

In particular, when p = 1 we setcy---c, =c¢| = —1andc1-~-c;=cf=c1+1.

In the following we will use lexicographical order between blocks and sequences.

Definition 2.1. A blockt, ---t, € {0, 1, ---, N—1}? iscalled an admissible block ift, < N—1
and for any 1 < i < p we have

[ty S Bieetpty - iy and ti"'t;tl"'tifl <l1--'t;.

Clearly, there exist infinitely many admissible blocks. In the following we introduce a
generalized Thue—Morse sequence which plays an essential role in this paper.
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Definition 2.2. Forablockt, ---t, € {0, 1,---, N=1} witht, < N—1, we call the sequence
) = 6;(t;--- t;)) a generalized Thue—Morse sequence generated by the block t; - - - t; if
(6;) can be defined by induction as follows. First, we set

+

pe

Then, if 0y - - - 0an ), is already defined for some nonnegative integer m, we set

9]"'9p:tl"'t

Oy pat -+ Onty = B3 - O
We first discovered the generalized Thue—Morse sequences from the work of De Vries and
Komornik [13]. Later, we found that these sequences were previously studied by Allouche
and Cosnard [1], Komornik and Loreti [24], et al.
If N = 2k +1, then the sequence (X;(N)) defined in equation (3) is exactly the generalized
Thue—Morse sequence (6;(k + 1)). If N = 2k, using lemma 4.6 one can also show that
(A;(N)) = (6;(k)). Thus, for any N > 2 we have

o= (1([2))

where [x] denotes the least integer larger than or equal to x.
In the rest of the paper we will reserve the notation (¢; (8)) especially for the quasi-greedy
B-expansionof 1 € I'g y = [0, (N — 1)/(B — 1)] (since B € (1, N)).

Theorem 2.3. For N > 2, lett;---t, € {0,1,---, N — 1}°. Then t|---t, is an admissible
block if and only if (a;(Br)) = (t1---1,)* and (o; (By)) = (6;(t ~-~t;)) for some bases
B, Bu € [Gy, N), where Gy is the critical base defined in (2). Moreover, B; < By, and B
is algebraic while By is transcendental.

We point out that theorem 2.3 generalizes some results in [2] and [23]. Here we call the
transcendental numbers By De Vries—Komornik constants since these numbers were first
studied by De Vries and Komornik in [13]. Later in proposition 4.3 and theorem 4.4 we
will show that ¢; - - - ¢, is an admissible block if and only if (¢; (By)) = (6;(f; - - - t;)), if and
only if (6;(¢; - - -t;)) is the unique By -expansion of 1.

Definition 2.4. The closed interval [BL, Bu] given in theorem 2.3 is called an admissible
interval generated by t, - - - t, (simply called, admissible interval) if

(i(Br)) = (t1---1,)™ and  (o;(By)) = (Oi(t1---1))).
Since we have infinitely many admissible intervals, it is worthwhile to investigate the size of
union of these admissible intervals and the relationship between them as well.

Theorem 2.5. The union of all admissible intervals covers almost every point of (B.(N), N),
where B.(N) is the Komornik—Loreti constant. Moreover, for any two admissible intervals
lar, ayland [Br, Bul, either [ar, ay] N [BL, Bul =V or ay = Pu.

Theorem 2.5 says that for any two admissible intervals, either they are separated from each
other or they have the same right endpoint. Now we state our main result on the Hausdorff
dimension of Ug y.

Theorem 2.6. For N > 2, let [B., Bu] be an admissible interval generated by t, - - - t,,. Then
forany B € [Br, Bul the Hausdorff dimension of Ug y is given by

h(Ziy.r,)

log B
where h(Z,,...,) is the topological entropy of the subshift of finite type

Zt|~--t,, = {(dz) th "'tp < dn "'dn+p—l <h -~-t1,,n = 1}

dimH UﬁqN =
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We point out that when N = 2 Barrera [8] investigated the topological entropy of Ug . We
also point out that theorem 2.6 generalizes some results in [5,12,20,21]. This will be explained
in section 7 via some examples for which the Hausdorff dimension of Ug y can be calculated
explicitly.

3. Properties of unique expansions

Recall that («;(B)) is the quasi-greedy S-expansion of 1. The following characterization
of («;(B)) can be proved by a slight modification of the proof of [13, proposition 2.3] (see
also, [0, theorem 2.2]).

Proposition 3.1. Let N > 2 and («;(B)) be the quasi-greedy B-expansion of 1 w.r.t. the digit

set {0,1,---, N — 1}. Then the map B — («;(B)) is a strictly increasing bijection from the

interval (1, N onto the set of all infinite sequences (y;) € {0, 1, ---, N — 1}*° satisfying
VielVis2 - - S Y1v2--- forallk > 0.

Moreover, the map B — (a;(B)) is continuous w.r.t. the topology in {0, 1, - - -, N —1}* induced

by the metric defined by d((ci), (d,-)) = p—min{jic;#d;},

In the following we will write (¢;) instead of (¢;(8)) for the quasi-greedy B-expansion
of 1 if no confusion arises for 8. The following proposition for the characterization of greedy
expansions can be proved in a similar way as in [15] (see also, [6, theorem 3.2]).

Proposition 3.2. For N > 2 and B € (1, N], (b;(x)) = (b;) is the greedy B-expansion of
some x € [0, (N — 1)/(B — 1)] if and only if
bpsibpyr - < ajay - -

whenever b, < N — 1.

By proposition 3.2 we have an equivalent characterization for the greedy expansions (see
also [6, 13]).

Proposition 3.3. For N > 2 and B € (1, N], (b;) = (b;(x)) is the greedy B-expansion of
some x € [0, (N — 1)/(B — )] if and only if

Dnaka1bpisn -+ < ajop -+ 4)
for all k > 0 whenever b, < N — 1.

Proof. The sufficiency follows directly by taking k = 0 in equation (4) and then using
proposition 3.2. For the necessity, suppose (b;) is the greedy expansion of some x, and
suppose b, < N — 1 for some n > 1. By proposition 3.2 we have

bunibpyr - < oo, 5)
We claim that 20,43 -+ - < ajop - --.

If b,11 < N — 1, proposition 3.2 yields the claim. If b,,; = N — 1, equation (5) implies

that ; = N — 1 and therefore

bniabysz - - < apaz--- <oy - -,

where the second inequality follows from proposition 3.1.
By induction, we have b, 1x+10p4442 - - - < ojop - - - for all k > 0. O

Note that an expansion (d;) = (d;(x)) is the unique expansion of x € Ug y if and only if
both (d;) and (d;) are the greedy expansions (see [15]). By using proposition 3.3 we have the
following characterization of Ug y.
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Theorem 3.4. For 8 € (1, NJ, let (o;) = («t; (B)) be the quasi-greedy B-expansion of 1. Then
x € Ug, y if and only if the B-expansion (d;) = (d;(x)) of x satisfies

Amks1 sz -+ < ooy« - -,
Apski1lpsksr -+ < @iap - - -,

forall k > 0, where m is the least integer such that d,, < N — 1 and n is the least integer such
that d, > O.

In terms of theorem 3.4 we can simplify the calculation of the Hausdorff dimension of Upg y
as described in the following theorem.

Theorem 3.5. For N > 2 and B € (1, N1, let (o;) = («; (B)). Then we have
dimH Uﬁ.N = dimH Wﬁ,N,

where

Loy <dydyy - <agan -, n}l}.

ba|&.

e

Proof. Clearly, by theorem 3.4 we have Wy y C Up y. In terms of the properties of Hausdorff
dimension it suffices to show that

oo N—1
UﬂNCUd-FWﬁN UUd;Zﬂ’N
n=1 d=1
oo N-2 m N —1 d+W5'N (6)
UUU(Z ﬂl ﬂm+1 )

m=1d=0 (=1

Let x € Ugy and (d;) = (d;(x)) be its unique B-expansion. We will finish the proof by
showing in the following three cases that x is also in the right-hand side of (6).
Casel. 0 < d; < N — 1. Then by theorem 3.4 it follows that

a0y - < digidpgr - < ogop -

forallk > 1,i.e.,dxds--- € H;l(Wﬂ,N) where I is the projection map defined in (1).
Case Il. dy = 0. Then by theorem 3.4 it yields that

diidpar -+ < g0y« -+

forall k > 1. Let n be the least integer such that d, > 0. Again by theorem 3.4 it follows that
dn+1dn+2 s € ngl(Wﬁ,N)-

Case Ill. dy = N — 1. Then in a similar way as in case II we have d1dy2 -+ €
ngl (Wp,n), where m is the least integer such thatd,, < N — 1. O

Clearly, Hgl(Wﬂ,N) is a symmetric subshift of {0,1,---, N — 1}*°.  According to
theorem 3.5 it suffices to prove theorem 2.6 for Wy y instead of Ug .

4. Proof of theorem 2.3
Suppose that t ---1, € {0,1,---, N — 1}7 is an admissible block. Then by definition 2.1 it
follows

mgti"'tptl"'tifl<[i"'t;m<tl"'[; @)

forany 1 < i < p. The following proposition guarantees that (¢, - - - £,)* is a quasi-greedy
expansion of 1 for some base 8, € (1, N].
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Proposition 4.1. Lett---t, € {0,1,---, N — 1}? be an admissible block. Then (a;(Br)) =
(ty -+ - 1,)>™ for some base B; € (1, N].
Proof. Sincet;---17, € {0,1,---, N — 1} is an admissible block, by (7) it follows that
fietpty oty Sty 1y
forany 1 < i < p. This yields
tietp(ty 1)) = (- tpty 1) < (11 1,)™.
Then by proposition 3.1 we have («; (1)) = (t; - - - ,)* for some B; € (1, N]. O

Note that 8 > 1 is a purely Parry number if («;(8)) is periodic. Hence, the base S,
defined in proposition 4.1 is a purely Parry number. Later in proposition 4.5 we will show that
BL > Gy. Recall from definition 2.2 that (6;) = (6;(¢; - - - t;)) is a generalized Thue—-Morse
sequence. We will show in proposition 4.3 that if ¢ - - - ¢, is admissible, then (6;) is also a
quasi-greedy expansion of 1 for some base By . First we give the following lemma.

Lemma 4.2. Lett, - - - t, be an admissible block and let (6;) = (6; (¢, - - - t;)) be the generalized
Thue—Morse sequence generated by t; - - - l;. Then for any n > 0 we have

O Omp_izt <O;---0pp <Op---00ip_iy (8)

forany 1 <i <2"p.

Proof. We will prove (8) using induction on n. Since t; - - - t,, is an admissible block, it follows
from equation (7) that

91"'9p7i+1gti"'tp<ti"'t;:9i"'9pgel"'epﬂ#l

forany 1 < i < p. Then (8) holds for n = 0.

Suppose (8) holds for n = k. We will split the proof of (8) for n = k+ 1 into the following
two cases.

Casel. 1 < i < ka. Then by induction we have 6; - - - 0, > 0 ---0,_;;1, which
yields

O -+ Ogpriy > 01 Ot i

Again by induction we have 6; - - - 0, < 01 -+ 0,41, and forany 2 < i < ka,
02t pat + Ortprict = 0101 < Oxtp_iya -+~ i,

where the inequality holds by the induction. Then
01 Ot p_jyg < O; v+ Oginy <Oy -0t iy

forany 1 <i < 2Fp.
Case Il. 2¥p < i < 2%'p. Then we can write i = 2¥p + j with 1 < j < 2fp. By
induction and definition 2.2 of the generalized Thue—Morse sequence (6;) it follows that

91 N '92"*1p—i+1 < 91 . '02k17+ = 95 N -92k+1p g 61 i '92k+1p—i+1
forany 2¢p <i =2kp+ j < 2K p. O
Proposition 4.3. The block t,---t, € {0,1,---, N — 1}/ is admissible if and only if
(a; (By)) = Oi(t - - - t;))for some base By € (1, N].
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Proof. We first prove the sufficiency. Suppose («;(By)) = (O;(t; - -- t;)) for some By €
(1, N]. By definition 2.2 the generalized Thue—Morse sequence (6; (¢ - - - t;)) begins with

(Qi(tl...t;)) :tl"'t;mtl"'t;tl"'t;”" 9)
Then by proposition 3.1 it follows that

ti"'f;tl"'ti—lgll"'t; and ti"'tptl"'ti—lgtl"'t;

for any 1 < i < p. By definition 2.1 it suffices to show that #; -~ £ty -~ £ F# t; - t; for
all1 <i < p.

Suppose f; -+ - fpt; -+ -ty =t ---t; for some 1 < i < p. Then by proposition 3.1 and
equation (13) it follows that

livoty St tp_jpl
Observing by proposition 3.1 that ¢; - - - t; <ty -+ tp—ir1 WE obtain

ti"’tpfl"'t+=tl"'t;tl"'tp—i+l-

P
This implies that i # 1. Again by proposition 3.1 and equation (13) we obtain

fiooticg =t -1, for2 <i <p.
This leads to a contradiction with the assumption that #; - --7,t; -~ t;_1 =11 - - - t;.

In the following we will show the necessity. Leti > 1. Then i < 2"p for some large
integer n > 0. By lemma 4.2 it follows that

9,'4_1 ~--92np < 91 -~-92np_i and 91 9, < 92np_i+1 --~92n[,.

This implies
Bi1 = OO pat - O pyi -+ = Opy - O 0y - 0 -+ -
< 91 s anp,,-eznp,”l ce 92;1p LRI
By proposition 3.1 this establishes the proposition. |

Moreover, using lemma 4.2 one can show that (6;) is the unique Sy -expansion of 1.

Theorem 4.4. Lett;---t, € {0,1,---, N — 1}7. Thent, ---t, is an admissible block if and
only if the generalized Thue—Morse sequence (0;) = (6;(t; - - - t;)) is the unique expansion of
1 for some base By, i.e.

9192"'<0i+10i+2"'<0192"’ f0ranyi>1.

Recall from (2) that G is the generalized golden ratio. We will show that the admissible
intervals are all includedin [G y, N). Inproposition 5.2 we will show that all of these admissible
intervals cover (B.(N), N) a.e., where B.(N)(> Gy) is the Komornik—Loreti constant.

Proposition 4.5. Let [B;, By] be an admissible interval generated by t|---t,. Then
[BL, Bul € [Gw, N).

Proof. Clearly, by definition 2.2 of the generalized Thue—Morse sequence (6;) = (6;(¢; - - - t;))

it follows that

(i(Bu)) = (0;) < (N — D> = (i (N)).

By proposition 3.1 this implies By < N. In the following we will show ;. > Gy.
Sincet; - - - t, is admissible, it yields that#;, > f; = N—1—1,. Thent; > [(N —1)/2]. By
definition 2.1 of an admissible block one can directly verify that (z, - - - 1,)> > (¢;1;)* (see also
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[3, proposition 2]). Note by (2) that (e; (Gy)) = (t; - 1,)® = ([(N = 1)/21[(N — 1)/2])>.
Then

(@i(Br) = (t1--- 1)) = (11)> = (i (Gw)).
By proposition 3.1 this implies 8; > Gy. g

In the following we will investigate the algebraic properties of the generalized Thue—Morse
sequences (6;) and show that the De Vries—Komornik constant 8y is transcendental. Recall
that (7;)72 is the classical Thue—Morse sequence beginning with

01101001 100101101001011001101001 - - -.
We write two equivalent definitions for this sequence (t;) (see, e.g., [4] for details).
@ Settg=0,t;m =1forn=0,1,---, and
g =1—17 if 1<k<2"n=1,2,---.
(I) For a nonnegative integer i we consider its dyadic expansion
i=e,2"+6,12" "+ +gy, & €{0,1}.

Then we set

_ [0 if 37 e; is even,
T Yy s odd,

Based on (1;) we give an equivalent definition for the generalized Thue—Morse sequence (6;).

Lemma 4.6. Let (6;) = (6;(t; - - - t;)) be the generalized Thue—Morse sequence generated by
t - t; Then for any integer £ = ip +q withi > 0,1 < g < p we have
eg={tq+”@_’q)’ lsa<p (10)
ty+ Tty —tg) + (T — 1), if g=p.
Proof. Recall from definition 2.2 that (#;) is the generalized Thue—Morse sequence generated
bytl~~~t;ifandonlyifm--~np =1 ~-t;,andf0ranyn > 0 we have
Nty =Nop+ 1 =N —=n2p, Nupu =1 foralll <k <2"p. (11)
Clearly, using 7o = 0,7; = 1 in equation (10) it yields that 6, ---6, = t;---¢,. Then it
suffices to show that the sequence (6;) given in equation (10) satisfies the conditions in (11).
For n > 0, using definition (I) of (t;) and equation (10) it follows that
02n+l p + 02”[)
= (lp + t2n+171(ﬁ — [p) + (Tgne1 — T2u+171))
+ (lp + tzu_l(ﬁ — tﬂ) + (o0 — 772”—1))
=t +(I =12 )(t) — 1) + (1 = (1 = 1201))
+1, + ‘L'2n,1(5 — tp) + (1 — 1)
=t1,+1,+1 =N,
ie., 92n+1p =N — 92»11, = %+ 1.
For 1 < k < 2'p we can write k = (6,12" ' + .-+ + 12! + g9)p + g with

&n—1,---,& € {0,1}and 1 < g < p. Without loss of generality we may assume 1 < g < p.
If Z;'.;(l) ¢; is even, then using definition (II) of (z;) and equation (10) it follows that

O = Oisryeniypeg = 1o +00g —1g) =1y,
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and
Orrprk = 9(2"+Z Zoei2)prg T =1+ 10y — 1) =14.
Hence, 0 41 = 6. Similarly, if Z"_(l) €; is odd , one can also show that 6y, = 0. O

The following theorem for transcendental numbers is due to Mahler [27] (see also [23]).

Theorem 4.7 (Mahler [27]). Ifz is an algebraic number in the open unit disc, then the number

o0
Z = Z 77
i=1
is transcendental, where (t;) is the classical Thue—Morse sequence.

Proof of theorem 2.3. Clearly, by proposition 3.1 8; < By. By propositions 4.1, 4.3 and 4.5
it remains to show that the De Vries—Komornik constant S, is transcendental.

Let (6p) = (B¢(t1 - - - t;)) be the generalized Thue-Morse sequence generated by the block
ty -+ - 1,. By the definition of By we have

o0
1= 6By
(=1

For any integer £ > 1, let{ = ip+¢g withi > 0and 1 < g < p. Then using lemma 4.6 we
can rewrite the above equation as follows.

00 oo p
1= Z@,BU_{ = Z Zgimqﬁu_ip_q
=1 i=0 g=1
Zﬁu o(
= Z,BUﬂp<
q

+ Z(Tm — )y "

i=0

i=1 q=1

+> nBu ™ = BuP Y w(Bu,
i=1 i=1
where the last equality holds since 7y = 0. Rearranging the above equation it gives
ad : 1= Bu™ =20 tqBu™
Y ") = Zq‘; i :
= (=B (1= Bu ™" + X0, — 1)pu ™)

If By > 1 is an algebraic number, then the right-hand side would be algebraic, while the
left-hand side would be transcendental by theorem 4.7. This contradiction implies that 8y is
transcendental. |

Mv

(14 + 7oty = 1)) Bu™ + (5ot — @By ")

1

q
0

Bu )+ Y by (Z(tq—tqm ")

i=0

Mu
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5. Proof of theorem 2.5

First we will show that all of the admissible intervals cover almost every point of (8.(N), N).
Let U be the set of B € (1, N] for which 1 € I'g y has a unique S-expansion, i.e. there
exists a unique sequence (d;) € {0, 1,---, N — 1}*® such that | = >_°, d;/pB'. Let U be the
closure of U. The following proposition for U was first proved by Komornik and Loreti [24]
for B € [N — 1, N] and recently proved by Komornik ef al in [22].

Proposition 5.1. For B € (1, N] let (a;) = (a;i(B)) be the quasi-greedy B-expansion of 1.
Then B € U if and only if
o100« - <(¥k+](¥k+2-'-<061062'-' forallk}O.

Moreover, U has zero Lebesgue measure.

Proposition 5.2. The union of all admissible intervals covers (B.(N), N) a.e..

Proof. By proposition 5.1 it suffices to show that (8.(N), N) is covered by U and the union
of all admissible intervals. Take 8 € (B.(N), N), and let (o;) = («;(B)) be the quasi-greedy
B-expansion of 1. By proposition 3.1 it gives

Ot 1042 * * * < o0y - for anyk > 0. (12)
Suppose 8 ¢ U. By proposition 5.1 it follows that there exists ¢ > 0 such that
Qge10gs2 -+ - SO0 . (13)

Let m be the least integer g satisfying (13). Since 8 > B.(N), by proposition 3.1 we have
oy > ap. Thenm > 1, and one can verify that «,,, > 0. We will finish the proof by showing
that 8 is contained in the admissible interval [8;, By] generated by «; - - - «,,.

First we will show the admissibility of ¢ - - - c,,. Since B > B.(N), by proposition 3.1
it follows that either o > E oray > k =« > o) with N = 2k. If m = 1, then by the
definition of m it gives that o > E. This yields the admissibility of o . In the following
we will assume m > 2. Since m is the least integer satisfying (13), it follows that

O Oy =0 - Oy Torany 1 <i < m.

We claim that ¢; - - - &ty > o1 - - - —i+1 fOrany 1 <i < m.
Suppose «; - - -ty = A7 - - - &py—i+1 for some 1 < i < m. Then by the minimality of m
and (12) we have

Qi1 Oy * > Q42043 -+ = Q10 -« -,

leading to a contradiction with (13).
Hence, o; - - - oy > a7 -+ - 0p—iz1 for any 1 < i < m. This, together with (12), implies
that

al...a;lgai...a’;al...aiil and ai...amal...ai71<a1...am,

forany 1 <i < m. By definition 2.1 «; - - - o, is admissible.
Now we will show that 8 € [Br, Bu] with («;(Br)) = (a1 ---,,)*® and (o; (By)) =
(6; (a1 - - - o). This can be verified using proposition 3.1 in the following equation.

(@1 0,)® < @i < Ay Ty e = (G o),
where the second inequality follows by (13). U

By theorem 2.6 and the proof of proposition 5.2 we are able to calculate the Hausdorff
dimension of Ug y for any 8 € (B.(N), N)\ U.
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Corollary 5.3. For 8 € (B.(N),N) \ U, let () = (o (B)) and let m be the least integer
satisfying
U1 O -+ < Q0 < - -

Then dimy Ug y = h(Z )/ log B, where h(Z ) is the topological entropy of

apeO oy

4 ={d) o1 om <dy-dpamy <ap-cco,,n 21}

A Oy m?

In the following we will investigate the relationship between any two admissible intervals.
Let [ar, ay] and [Br, By] be two admissible intervals generated by s;---s; and ¢, --- ¢,
respectively. Then by definition 2.4

(@i(ar)) = (s1---5)%,  (ai(ay)) = @i(s1---5,)),

and
(@i (Br) = (ti--- 1), (ai(Bu)) = @it ---1,)).

We will prove that ; < By implies oy < By. By proposition 3.1 this is equivalent to showing
1 5)® < Gt --1) = Ot < G-, (14)

We will split the proof of (14) into the following two cases: Casel. 1 < g < p (seelemma5.5).
Case Il. g > p (see lemma 5.6). First we give the following lemma.

Lemma 5.4. Let t, - - - t, be an admissible block. Then for any q < p/2 we have t; -- -1, <
Tgel -+ Tog.

Proof. Supposet;---1,* > t,41 -+ - 1o, forsomeqg < p/2. Write p = m2q+ j withm > 1 and
0 < j < 2q. Since t; - - - 1, is an admissible block, by (7) it yields that 1,1 - - - tog > 11 -+ 1.
Hence,

-y :tl"'tqm-

Again by (7) it follows that

tq+l"'t3q=tl"'tqf24+l"'t3q>t1"‘t2q=tl"'tqtl"'tq,

and Ig+1 - 13y <t Iy. This yields Dgsl - l3g =1t -+ 1.
By iteration, one can show that

foootp =1 tagej = (tl"‘[qtl"'tq)mtl"'tj = (tl"‘t2q)mfl"'tj-
This is impossible since otherwise we have by (7) that

tl"'t;—:tp—jﬂ"'t;gll"'tj- O

Lemma 5.5. Let s1---s, and ty---t, be two admissible blocks with 1 < q < p. If
(5175 < @i (1 -+~ 1)), then B (s1---57)) < (O;(11 -+ -17)).
Proof. Suppose

(Sl-~-Sq)oo < (Hi(t1-~~t;)) =: ;). (15)

Then sy ---5, <ny---ny. Weclaimthat sy ---s, < 01 ---14.
If s+ -54 = n1---ng, then by (15) and theorem 4.4 it follows that

Sl...sq<nq+1...nzq<T]1...nq:S1...sq.

This yields ny -+ - 12y = (s1-- ~sq)2. By iteration, we have (;) = (s1---5,)®, leading to a
contradiction with (15).
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Hence, 51 -+ -5, < 11 -+ 14, 1.€., 51 - - -s;’ <npe--mg. Set (&) = (6;(sy - ~s;’)). Clearly,
if& & =s1---s; <m---ng then (&) < (1;). Now we assume

gl"‘éq =nN1--1q and p=2nq+j
withn > 0and 0 < j < 2"¢q. We will split the proof of (§;) < (»;) into the following two
cases.
Casel. n =0. Then p = g+ j for0 < j < g. By definition 2.2 and lemma 4.2 it follows
thatfor0 < j <g¢

Egr1Egej =81 & =M1 T < Np—jr1 Np = Ngal =+ Ngjs

and for j = ¢,

Egr1 - &2 =$1~-~§q+=m+<ﬂq+1'“ﬂ2q-

Then by definition 2.2 we obtain that (&) < (1;).
Case Il. n > 1. Then g < p/2. By definition 2.2 and lemma 5.4 it follows that

sl...;;-'zq:sl...%‘qsl...é—'q_":nl...nqnl...nq+gnl...nzq'

If & -+ &y < n1--- 1y, then (§) < (1;). Suppose & - - - &y = 1y - - - n24. Then by iteration
we have

E1 - &g <My Mg

Clearly, if &; - - - &2y < 11 - - 02ng, then (&) < (1;). Now suppose & - - - &g =11 - - - ong. In
asimilar way as in case I, one can show by definition 2.2 and lemma‘4.2 that &2ng 41 - - - Ep1gej <

N2rg+1 = = N2ng+j if 0 < j < an, and EZ”qH v $2n+lq g Nong+1 ** - Nanvly if p = 2n+1q. Then
(&) < (). O

Lemma 5.6. Let s, -- -5, and t| - - - t, be two admissible blocks with q > p. If (s1---5,)®° <
@ity -+~ 1)), then (0;(s1 -+ - 57)) < (6i(t -+~ 1))

Proof. Suppose
(s1°+-8)% < @it ---t;)=(m) and g=2"p+j (16)

withn > 0and 0 < j <2"p. Then sy ---spp <Ny n2ep. IS+ 820, < 11120y, then
by definition 2.2 it follows that

0i(s1---57)) = 51+ - S2pSampar -+ < (1) = O (11 -+ 1)).

We will finish the proof by showing that s - - - $2:), 7 71 - 721,
Suppose si - - - $21, = 11 - - - 2. We claim that

sy =y, (17)

Clearly, if j = 0, i.e. ¢ = 2"p, then (17) holds. Now we assume 0 < j < 2" p. By (16) and
definition 2.2 it follows that

SonprltS2paj K Monppl c Nonpej = N1 1.

Also by the admissibility of s; - - - 5, we have

Sonpgl * S paj 251...51. =77

Then §p:ps1 - -+ S22 psj = N1 -+ 1] = N2npat - - - Non p+j Which yields equation (17).
Using equation (17) in (16) it follows from theorem 4.4 that

Sl...sq<nq+1...n2q<n1...nq:S1...sq.

200



Nonlinearity 28 (2015) 187 D Kong and W Li

Then g4y -+ - 1m2q = 81 -+ - 54. By iteration, we have
@ity ---1)) = (i) = (515,
leading to a contradiction with (16). O

In the following we will prove that «; > B; implies cy > By. By proposition 3.1 this is
equivalent to showing

(51005 > (t1---1,)° = (Oi(s1---57) = O:(t1 -+ 1)). (18)

The proof of (18) will also be split into the following two cases. Case I. 1 < g < p (see
lemma 5.7). Case Il. g > p (see lemma 5.9).

Lemma 5.7. Let s;---s, and t|---t, be two admissible blocks with 1 < q < p. If
(517 5)% > (t1 -+ 1,)%, then (0;(s1 -+~ 57)) = (6 (11 -+~ 17)).
Proof. Suppose

(s1°°-5)% > (t---1,)° and p=nqg+j (19)
withn > 1 and 1 < Jj < q. Then (s, '--sq)"sl cee S > h coclygej = o dp. If
(s1++-8g)"s1-++8; =t ---1,, then

t])—j+] ...l‘p =] ...Sj =t1“'tj7
leading to a contradiction with the admissibility of #1 - - - £,. So, (51 -+ -54)"s1-+-8; > t1 -+ -1,
ie., (s1---8y)"s1---8; =11+ -t;. Then by definition 2.2 it follows that

0i(s1---57)) > (s1---59) " s1- -5, (N = 1)® = (6i(ts - - - 1))). O
When (s; -+ -5,)%° > (t; - - -1,) withg > p, itis more involved to prove (6; (s - - ~s;)) >

(CAGERD t;)). First we consider the following lemma.

Lemma 5.8. Let 51 ---s, and t - - - t, be two admissible blocks with g > p. If s;---s, >
-y, then (651 ---50) = 6(t1 ---11)).

Proof. Write g =2"p + j withn > 0and 0 < j < 2"p. Suppose sy - -5, > t; -+ -1, 1.€.
Sioesy =t = O - )
Clearly, if 51 - -5, > 1 -~t;, then by definition 2.2 it yields (6; (s --~s;’)) > (0;(n ~--t;)).
Now we assume sy -+ -5, =1 --- t;, and split the proof into the following three cases.
Casel. p < g < 2p. Then by the admissibility of sy - - -5, = 51 - - - 54 it follows that
(91‘(51 ...S;)) = S] ...S[’S[H'l ...S;+j e
> 81 8p81 8 (N — D
=ttt (N = D™ 2 @it 1),
Case Il. ¢ = 2p. Again by the admissibility of s; - - - 5, we have
Sl...sq =51"'S;p >s1spﬁ'—:tlt;m
This implies that (6; (s - - ~s;)) > (6;(ty -+ ~t;t1 S tp)) = (0; (- -t;)).
Case Ill. g > 2p. Then by the admissibility of sy - - - s, it follows that

Sp+1"'s2pZsl"'sp:tl"'t;' (20)

We claim that the inequality in (20) is strict. Otherwise, by the admissibility of s; - - -5, we
have

Sl"'spS2p+1"'S3p:Sp+l"'s3p>Sl"'S2p:sl"'spsl"'s]M
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and $2p41 - -+ 83p < 81 -+ 5p. This implies that 5,41 - - - §3, = 51 ---5,. By iteration, we have
forq =2kp+ £ with0 < £ < 2p,

—\k
S]...Sq:(Sl...spsl...sp) S0 Se.

Then, s;_¢41 -+ - 54 = 51 - - - 8¢, leading to a contradiction with the admissibility of s; - - - s5,. So,
the inequality in (20) is strict, i.e.

[ _— 2
Sl...szp>Sl...spsl...Sp+=l’l...t;t1...tp=(Qi(tl...t;))izpl_

Then, by induction, it follows that sy - -5, > (6i(f;--- t;))iz;’i. Again by the same
argument as in case I we can show that (6; (s; - - 's;’)) PYXCAGERE t;)). O

Lemma 5.9. Let s, -- -5, and t; - - - t, be two admissible blocks with q = p. If (s1---54)*° >
(ty -+ 1), then B (s1 ---sD) > B;(ty - 1),
Proof. Letg =np + j withn > 1 and 0 < j < p. Suppose

(5175)% > (11 1,). 1)

Then sy ---s, > t;---1,. By lemma 5.8 it suffices to show that sy - - -5, # 1 --- 1.
Suppose sy -+ -5, =t; - - -t,. Then by (21) and the admissibility of s; - - - 5, it gives that

Sl"'sp>sp+1"'S2p>t1"'tp:sl"'sp-
Then sy - 57, = (# -~ tp)2. By iteration, we have
Sl"'snpz(tl"'tp)n- (22)

If j = 0,ie. g = np, then (22) violates (21). If 0 < j < p, then (22) also leads to a
contradiction, since by (21) and the admissibility of sy - - - 5, it follows that

Sl"'Sj>Snp+1"'snp+j>t1"'tj=5'1"‘sj~ I:l
Proof of theorem 2.5. By proposition 5.2 it suffices to show that either [, oy ]N[BL, Bul =¥
or oy = PBy. By symmetry it suffices to show that «; € [B., By] implies oy = By. This

can be verified by the following observations. By lemmas 5.5, 5.6 and proposition 3.1 it
follows that

ap <Py = ay <Pu.
Moreover, by lemmas 5.7, 5.9 and proposition 3.1 it follows that

ar =2 pf = ay = py.0

6. Proof of theorem 2.6

Let [B., Bu]l € [Gy, N) be an admissible interval generated by #; - - - ,,, i.e.
(i(Br)) = (t1---1,)™ and  (2;(By)) = (Oi(t; ---1))).
Using lemma 4.2 one can easily get the following lemma.

Lemma 6.1. Let t, - - - t,, be an admissible block and let (6;) = (6;(t, - - - t;)). Then for any
n =0,

O ((O1 0 01+ 021 p) ™) (OO0 O -+ - 02 )™
foranyi > 1, where o is the left shift such that o ((a;)) = (aj+1)-
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By lemma 6.1 and proposition 3.1 it follows that (8 - - - 61-1,, 0y - - - 050-1,,)* is the quasi-greedy
expansion of 1 for some base 8, € (1, N], i.e.

(@i (B)) = (61 - -+ o1 O - -+ 62m1)>. (23)

Clearly, (o;(B1)) = (01---0, 6,---0, ) = (1 -~t; 1 -~-t;)°°, and the first 2! p elements

of (a;(B)) coincide with that of the generalized Thue—Morse sequence (6; (¢ - - - t;)). Hence,

as n — oo the sequence («;(B,)) increasingly converges to the generalized Thue—Morse

sequence (6;(t; - - - 1,)). By proposition 3.1 it gives that 8, converges to By from the left.
Recall from theorem 3.5 that Wy y is defined by

[e ]
d:
Wﬁ*N:{Z’B—lz‘: ooy <dydy - <arag---, n}l}.
i=1

The following lemma investigates all possible blocks occurring in the S-expansions of points
in Wpg y for 8 < Bi.

Lemma 6.2. Let t, - - - t, be an admissible block and let (a;(B1)) = (t; -~ 't;tl e t;;)oo. If
B < Bi, then Wy y C Hf;(Z,]...,p), where

Zt1-~~t,, = {(dz) th "'tp < dn "'dn+p71 < I "'tpsn > 1}

Proof. Since 8 < B, it follows from proposition 3.1 that («;(8)) < ((B1) =
(t - t+t1 t+)°° Take x = I1g((d;)) € Wy n. Thenforalln > 1,

(-3t 1) < (@ (B) < dydysr -+ < (@i(B) < (-~ 151 -~ 1) (24)

This implies

+

pe

We will finish the proof by showing that the inequalities in the above equation are strict.
Suppose d,d,41 - - dn+p I = 4 t’r Then by equation (24) it follows that

tl"'t;gdndnﬂ"'drwpfl <t1"'t

dn+pdn+p+l co dn+2p—l < h- t+ Agaln by equatlon (24) we have dn+pdn+p+l dn+2p—l =
- ~t[’;. Then

dn+pdn+p+l T dn+2p—l =1 t;‘
By iteration, we have d,dy+ - - = (t; - - - t;tl .. t;)°°, leading to a contradiction with (24).
Similarly, one can show that d,dy+1 -+ - dypsp—1 # 11 - - 1. U

By lemma 6.2 it yields that dimy Wp y < dimy I1g(Z;,...,,) for B < B;. In the following
lemma we will show that dimy Wy y > dimy Ig(Z;,.. 1) for 8 > B;.

Lemma 6.3. Let t| - - - t, be an admissible block and let (o;(Br)) = (t1---1,)>. If B = By,
then dimy WﬂyN > dimy Hﬂ(Z,l...tp).

Proof. By the definition of Z,, ..., it follows that (7, - - ti---1,)® and (1, - - - 1,)> are the least and
the largest elements in Z;, ..., respectively. Accordingly, let 7, and 1* be, respectively, the least
and the largest elements in I[1g(Z;,....,), i.e.

e 1(): Eﬂp_i * o0 1(): tiﬁp_i
e = Tg((@ 1) )—Zﬁ;—_l, = Tp((n 1) )=Zﬁ;—_l.
Set
i . d; t*
= :0<d; <N—-1}U —+—:0<di <N—1}).
L}J({l N l ﬁn } {gﬁl-i-ﬁn })
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Clearly, T is a countable set. Then it suffices to show that [1g(Z,,..,,) \ T € Wy y. Take
x =Tlg((d;)) € N(Zy,...,) \ T. We claim that dydpy; -+ - < a1 (B)az(B) - - - forany n > 1.

Suppose that there exists no > 1 such that d, dp,+1 -+ = («;(B)). Since B > B, by
proposition 3.1 it follows that

dugtpgrr -+ 2 (@i (B) = (@i (Br)) = (- 1p)™.

Since x ¢ T, we have dyydyye1 -+ > (1 -+ £,)®. Then there exists a nonnegative integer s
such that dnudn0+1 T dno+sp—l =(t--- l‘p)s and
d’10+517dn0+5p+1 - dn0+sp+p71 >t tp,

leading to a contradiction with x € [15(Z;,..;,). Thus, dydy4; -+ < (o;(B)) forany n > 1.

Similarly, one can show that d,d,.; - - - > («;(B)) foranyn > 1. Sox € Wpg y, and we
conclude that [15(Z;,.;, ) \ T S Wy y. O

In the following we will investigate the structure of I1g(Z;,....,). If p = 1, then T14(Z;,) is
a self-similar set whose structure is well-studied (see [19]). Hence, we only need to consider
the case for p > 2. Note that (d;) € Zy., if and only if d,dps1 - - - dpsp—1 ¢ & foranyn > 1,
where

F = {cl~--cp:cl--~c,,<t1---t,,orc1---cp>t1---t,,}.

Then Z,,..,, is a p — 1 step of shift of finite type (see [26]). We construct an edge graph
¥ = (G, V, E) with the vertices set V defined by

V= {ul"'up—l :tl"'tp—l gul"'up—l <t1"'t[l—l}‘

For two verticesu = uy -+ -u,_1,v =v;---v,_1 € V, we draw an edge uv € E from u to v
and label it £y, = uyifus---up_ =vy--- v,,_23 and uy ---up_1v,—1 ¢ . One can check
that the edge graph &4 = (G, V, E) is a representation of Z;,..,,.

Lemma 6.4. Let t| - - - t, be an admissible block with p > 2 and let (o;(Br)) = (t1 -+ -1,)™.
Then for any B > By the set Tlg(Z,,...,) is a graph-directed set satisfying the SSC.

Proof. Let ¥ = (G, V, E) be the edge graph representing Z;,..;,. Foru = u;---u, 1 €V,
let

o0
d; )
K. :={Zﬁ:d,-=ui,1§1 <p—1, anddy - dpp ¢ﬁ,n>1}.
i=1

Foranedge uv € E withu =u;---up_1,v =v;---v,_1 € V we define the map f,, as

X+ Ly X+ up

Jun(x) = = . (25)
B B
We claim that for any v € V,
uveE
Take TTg((s;)) € Ky. Then sy = uy, -+, 85p—1 = up_j;and t;---1, < Sy Spep—1 <

ty---t, forany n > 1. This implies that
Vi=Sy--S,=Uy---uUp_15, €V and uve k.
3 When p = 2 this holds automatically.
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Then by equation (25) we have

p((51) € fun(Ky) = { a4

So, Ku - queE fuv(Kv)-

For the other inclusion of equation (26) we take IT5((s;)) € U
vp—1 € V such that TTg((s;)) € fu»(Ky). This
p—1; s, =v,1and

existuv € Ewithu =uy---
implies that s; = u;, 1 <i <

Mp—l,’U=U1"‘

tl"'tpgsn"'srwp—l gt]"'

tdi=u;, 1<i<p

"tpgdn"'dn+p—l <t

—-1;d, =sp;
tp,n>1}.

& fuv(Ky). Then there

uve

tp, n = 1.

So, I1g((s;)) € K,, and we conclude that | J,,,,c fuv(K») € K. Then equation (26) holds.

Similarly, one can check that

:UK,,.

veV

Mp(Zyr,)

Hence, I'Iﬁ(Zl s

tp) is a graph-directed set generated by the IFS {(Ky)uev, (fuv)uveE}

(see [28]). We will finish the proof by showing that the IFS {(Ky)ucv, (fuv)uver} satisfies

the SSC.

Since B > B, it follows from the proof of lemma 6.3 that for any (d;) € Z,,..,, we have

ai(B)az(B) - < dpdpyr - -+

Sar(B)aa(B)---
By proposition 3.1 this implies that [1g(Z;,..,,) < [0, 1].

foranyn > 1.

Let uv, uv’ € E with u =

Uy Up_1,v =0y vp_yand v’ =vj---v,_,. Suppose v, < v, ;. Then
plu, > d; Plu, v,,1+1
Py l P ﬁp‘H P ﬂl
S ’
u, d;
DI RD
Zop* ﬁp pri
for any (d;), (d)) € Z,,..;,. This yields fuo(Ky) N fuw (Ky) = 0. O

When p = 1 one can easily get the following lemma.

Lemma 6.5. Let t; be an admissible block and let (ct; (B1)) = t°

set I1g(Z,,) is a self-similar set satisfying SSC.

. Then for any B > B the

Now we give the Hausdorff dimension of Ug y for 8 € [B., Bil.

Proposition 6.6. Lett; - - -
([1...t;[1...

h(Zsy..1,)

dimH Uﬁ.N = IOgIB

t, be an admissible block and let (o; (BL)) = (¢ - -
15)%°. Then for any B € [Br, B1] the Hausdorff dimension of Ug y is given by

1), (i (B1) =

where h(Z,,...,) is the topological entropy of the subshift of finite type Z,,...,.

Proof. By lemmas 6.2, 6.3 and theorem 3.5 it follows that for any 8 € [S., B1],

dimH Uﬂ,N = dlmH H,g(Z,,...tp).
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By lemmas 6.4 and 6.5 [1g(Z; - - -t,) is a graph-directed set or a self-similar set satisfying
the SSC. Then the Hausdorff dimension of I1g(Z;,..,,) can be calculated via the topological
entropy of Ziy, (see [26]), i.e. dimpy Hﬂ(Z,l...tp) = h(Ztl...,p)/log,B. O

Proof of theorem 2.6. Recall from (23) that 8, is defined by
(@i (Bn)) = (01 - '92"—1p Or--- 92u—1p)oo,

Note by lemma 4.2 that ¢; - - - t;tl -+~ 1% is admissible. Then by proposition 6.6 it follows that
forany g € [Bi, 2]

WZ, i)

log B
By taking B = B, in the above equation and in proposition 6.6 it follows that h(Z,,..,,) =
h(Zn---t,tW)' Hence, for any 8 € [BL, B:] we have dimy Ugy = h(Z,..,)/logB. By
induction, we have

dimH Uﬁ,N =

h(Ziy.r,)

log 8

for any B € [B., B.]. Letting n — oo we have by proposition 3.1 that 8, — By. The authors
in [22] showed that the map 8 — dimy Ug y is continuous for 8 > 1. This establishes
theorem 2.6. U

dimH Uﬁ!N =

Remark 6.7. Let m denote the closure of Ug y. The authors in [22] showed for 8 > 1
that the set Ug y may be not closed, and the set Ug x \ Up, y is at most countable. Then for
B € (B, Bul

h(Zy,...,)

dimy Ug y =dimg Ug y =
g Ugnw HUpnN log B

7. Explicit formulae for the Hausdorff dimensions of U g n

In this section we consider some examples for which the Hausdorff dimension of Ug y can be
calculated explicitly. An admissible interval [8, By] is called a p-level admissible interval if
[BL, Bu] can be generated by an admissible block # - - - 7, of length p. First we will consider
the case for the one-level admissible intervals.

Theorem 7.1. Given N = 3, let [BL, Bu] be an admissible interval generated by an admissible
blockt; € {0,1,---, N —1}. Then [(N —1)/2]1 < t; < N —2, and forany B € [BL, Bu] the
Hausdorff dimension of Ug y is given by

log(2t; +2 — N)

log B

Proof. By definition 2.4 it follows that («; (B.)) = #{° and («;(By)) = (0;(t; +1)). Since
tp € {0, 1,---, N — 1} is an admissible block, by definition 2.1 it gives that [(N — 1)/2] <
t; < N — 2. By theorem 2.6 it follows that for any 8 € [B., By] the Hausdorff dimension of
Ugp, y is given by

dimH Uﬂ!N =

h(Z
dimg UﬁN = ( tl),
' log B
where Z,, = {(d;) : fi < d, < t;,n > 1}. So, the theorem follows by an easy calculation that
h(Z,) = log(t; —t; + 1) = log(2t; +2 — N). 0
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If we take 1 = N — 2 in theorem 7.1, then we extend the main result of Kallds [20].
This can be seen by the following observation. Clearly, 8;, = N — 1. By definition 2.2 of the
generalized Thue-Morse sequence (6; (N — 1)) it follows that

(i (By)) = (B:i(N —1)) = (N —DION —1DON =2) (N —D1---

N—1++/N2—-2N+5
; )

> (N = D)™ = (o

By proposition 3.1 this implies that By > (N — 1+ +/N? — 2N +5)/2.
Now we consider the Hausdorff dimension of Ug y for g in any two-level admissible
intervals.

Theorem 7.2. Given N > 2, let B, Bu]be an admissible interval generated by an admissible
block t1tr. Then [(N —1)/2]1 < h < N—1,1 < t < 1, and for any B € [BL, Bu] the
Hausdorff dimension of Ug y is given by

log2ti +1 = N+t + 1 — N)2 +4Q25 +2 — N) ) — log?2

dim[-] Uﬁ’N = 10g /3

Proof. Since #,¢, is an admissible block, by definition 2.1 it follows that
H<n<N-1 and 1<t <Ht.

By theorem 2.6 it suffices to calculate the entropy of Z,,,.

Let 9 = {G, V, E} be an edge graph representing the shift of finite type Z;,,,, where
the vertex set V = {f;, 7 + 1, -- -, t;} and the edge set E consists of all edges uv satisfying
ht; < uv < htp for u,v € V. Note that the entropy of Z,,, can be calculated via the
spectral radius of the adjacency matrix A of the edge graph ¢ (see [26]), where A is of size
(ty — 11 +1) x (f; — t; + 1) given by

o 0 --- 0 1 1
1 1 r .- 1
1 1 1 1 1
A=|: . :
1 - v 1 1 1 1
R | 1 1
1 -~ 1 0 --- 0 0

Here the total number of zeros on the top and the bottom rows are both equal tor; — 1, + 1 =
tp — 11+ 1. Then

Qt+1—=N)+/Q2t;+1 —N)2+4Q25,+2 — N)
g ) .
This completes the proof. O

h(Z;,) =lo

The authors in [18,25] showed that dimy Ug y = 0 when 8 = B.(N). This can also be
viewed by theorem 7.1 and 7.2.

Corollary 7.3. Given N > 2, for any B € [Gy, Bc(N)] we have dimy Ug y = 0.

Proof. We split the proof into the following two cases.
Case 1. N = 2k. By equations (2) and (3) it follows that

(2i(Gy)) = (k(k = 1)* and (i (B:(N))) = (6; (kk)).
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0.4+ 04

021 02

Figure 2. The Hausdorff dimension of Ug 5 for 8 € (B.(20), 20). In the left column
B is in the one-level admissible intervals; in the right column g is in the one-level and
two-level admissible intervals.

Hence, [Gy, B.(N)] is an admissible interval generated by the admissible block k(k — 1). By
theorem 7.2 it follows that for 8 = B.(N) the set Ug_y has zero Hausdorff dimension.

Case Il. N = 2k + 1. By equations (2) and (3) one can check that [Gy, B.(N)] is an
admissible interval generated by the admissible block k. Then by theorem 7.1 it follows that
for B = B.(N) we have dimy Ug y = 0. O

Example 7.4. Let N = 20. According to theorem 7.1 and theorem 7.2, we plot in figure 2 the
graph of the Hausdorff dimension dimy Ug 50 of Ug 20 for B € (B:(20), 20). Clearly, the one-
level and two-level admissible intervals cover a large part of [B.(N), N). By theorem 2.5 the
union of all admissible intervals covers almost every point of (B.(N), N). Thus, the dimension
function dimy Ug y has a devil’s-staircase-like behaviour.
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