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Abstract
Given an integer N � 2 and a real number β > 1, let �β,N be the set of
all x = ∑∞

i=1 di/β
i with di ∈ {0, 1, · · · , N − 1} for all i � 1. The infinite

sequence (di) is called a β-expansion of x. Let Uβ,N be the set of all x’s in �β,N

which have unique β-expansions. We give explicit formula of the Hausdorff
dimension of Uβ,N for β in any admissible interval [βL, βU ], where βL is a
purely Parry number while βU is a transcendental number whose quasi-greedy
expansion of 1 is related to the classical Thue–Morse sequence. This allows
us to calculate the Hausdorff dimension of Uβ,N for almost every β > 1.
In particular, this improves the main results of Gábor Kallós (1999, 2001).
Moreover, we find that the dimension function f (β) = dimH Uβ,N fluctuates
frequently for β ∈ (1, N).

Keywords: unique beta expansion, Hausdorff dimension, generalized Thue–
Morse sequence, admissible block, admissible interval, transcendental number
Mathematics Subject Classification: 37B10, 11A67, 28A80

(Some figures may appear in colour only in the online journal)

1. Introduction

Given an integer N � 2 and a real number β > 1, we call the infinite sequence (di) a
β-expansion of x if we can write

x =
∞∑
i=1

di

βi
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with di ∈ {0, 1, · · · , N − 1} for all i � 1. Let �β,N be the set of all such x’s, i.e.,

�β,N =
{ ∞∑

i=1

di

βi
: di ∈ {0, 1, · · · , N − 1}, i � 1

}
.

Then �β,N is a self-similar set generated by the iterated function systems (IFS) {fd(x) =
(x + d)/β : d ∈ {0, 1, · · · , N − 1}} (see [16]). Let {0, 1, · · · , N − 1}∞ be the set of all
expansions (di) with each digit di ∈ {0, 1, · · · , N −1}. We define the projection map �β from
{0, 1, · · · , N − 1}∞ to �β,N by

�β((di)) =
∞∑
i=1

di

βi
. (1)

When β > N , the IFS {fd(·) : d ∈ {0, 1, · · · , N −1}} satisfies the strong separation condition
(SSC), and then the map �β is bijective which implies that every point in �β,N has a unique
β-expansion. When β = N , the IFS {fd(·) : d ∈ {0, 1, · · · , N − 1}} fails the SSC but satisfies
the open set condition (OSC). Then all except for countably many points in �β,N have unique
β-expansions.

However, when β < N , the IFS {fd(·) : d ∈ {0, 1, · · · , N − 1}} fails the OSC. In
this case, �β,N = [0, (N − 1)/(β − 1)] and almost every point in �β,N have continuum of
β-expansions (see [9, 33, 35]). This has close connections to representations of real numbers
in non-integer bases. After the seminal works of Rényi [31] and Parry [29] β-expansions were
widely considered from many aspects of mathematics, such as dynamical systems, measure
theory, probability, number theory and so on (see [10, 13, 15, 17, 30, 32, 34, 36]).

In 1990 Erdös, Joó and Komornik [15] showed for N = 2 that for β ∈ (1, G) any internal
point of �β,N has continuum of β-expansions, and for β ∈ (G, 2) there exist infinitely many
points of �β,N having unique β-expansions (see [18]), where G = (1 +

√
5)/2 is the golden

ratio. Recently, Baker [7] generalized their result and showed for N � 2 that there exists
GN ∈ (1, N) defined by

GN =



k + 1 if N = 2k + 1,

k +
√

k2 + 4k

2
if N = 2k,

(2)

such that for each β ∈ (1, GN) any internal point of �β,N has continuum of β-expansions,
and for β ∈ (GN, N) there exist infinitely many points in �β,N having unique β-expansions
(see [25]).

Let Uβ,N be the set of allx’s in�β,N which have uniqueβ-expansions, i.e. for anyx ∈ Uβ,N

there exists a unique sequence (di) ∈ {0, 1, · · · , N − 1}∞ such that x = ∑∞
i=1 di/β

i. When
β ∈ (1, N), the structure of Uβ,N is complex (see [11–13, 18, 20, 21, 24]). Recently, De Vries
and Komornik [13] showed that there exists βc(N) ∈ (GN, N) such that (see also [14,18,25])

• if β ∈ (GN, βc(N)), then |Uβ,N | = ℵ0;
• if β = βc(N), then dimH Uβ,N = 0 but |Uβ,N | = 2ℵ0 ;
• if β ∈ (βc(N), N), then 0 < dimH Uβ,N < 1.

Here βc(N) is the Komornik–Loreti constant defined as the unique positive solution of the
equation 1 = ∑∞

i=1 λi/β
i, where (λi) = (λi(N)) is given by (see [23])

λi(N) =
{
k − 1 + τi if N = 2k,

k + τi − τi−1 if N = 2k + 1,
(3)

with (τi)
∞
i=0 the classical Thue–Morse sequence starting at (see [4])

0110 1001 1001 0110 · · · .
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Figure 1. The Hausdorff dimension of Uβ,10 for β ∈ (1, 110) (left column), and for β

in the one-level and two-level admissible intervals in (βc(10), 10) ≈ (5.976, 10) (right
column).

Allouche and Cosnard [2] showed that βc(2) is a transcendental number. Later, Komornik and
Loreti [23] showed that βc(N) is transcendental for any N � 2.

The purpose of this paper is to investigate the Hausdorff dimension of Uβ,N . From the
above observation it follows that

• if β ∈ (1, βc(N)], then dimH Uβ,N = 0;
• if β ∈ [N, ∞), then dimH Uβ,N = dimH �β,N = log N/ log β.

However, when β ∈ (βc(N), N) we know little about the Hausdorff dimension of Uβ,N .
When N = 2, Daróczy and Kátai [12] gave a method to calculate the Hausdorff dimension
of Uβ,N only if β is a purely Parry number. When N > 2, Kallós [20] showed that when
β ∈ [N − 1, (N − 1 +

√
N2 − 2N + 5)/2] the Hausdorff dimension of Uβ,N is given by

dimH Uβ,N = log(N − 2)/ log β. Later in [21] he investigated the Hausdorff dimension of
Uβ,N for β ∈ [(N − 1 +

√
N2 − 2N + 5)/2, N), and gave a method to calculate its Hausdorff

dimension when β is a purely Parry number.
In this paper we improve the main results of Kallós [20, 21]. In theorem 2.6 we give the

Hausdorff dimension of Uβ,N for β in any admissible interval [βL, βU ], where βL is a purely
Parry number while βU is a transcendental number. Moreover, we show in theorem 2.5 that all
of these admissible intervals cover almost every point of (βc(N), N). Therefore, we are able
to calculate the Hausdorff dimension of Uβ,N for almost every β > 1. In particular, we give
explicit formula for the Hausdorff dimension of Uβ,N when β is in any one-level or two-level
admissible intervals [βL, βU ] (see theorems 7.1 and 7.2 for more explanation).

Example 1.1. Let N = 10. By theorem 7.1, theorem 7.2 and the above observation we plot
in figure 1 that the graph of the dimension function f (β) = dimH Uβ,10 for β ∈ (1, 110).
In particular, we give a detailed plot of f (β) for β in the one-level and two-level admissible
intervals in (βc(10), 10) ≈ (5.976, 10). Clearly, the dimension function f (β) fluctuates
frequently for β ∈ (βc(10), 10). In [22] we will show that f (β) is continuous for β > 1.

The structure of the paper is arranged as follows. In section 2 we introduce the admissible
blocks, admissible intervals and the generalized Thue–Morse sequences, and state our main
results as in theorems 2.3, 2.5 and 2.6. In section 3 we presented some properties of unique
beta expansions. The proofs of theorems 2.3, 2.5 and 2.6 are given in sections 4, 5 and 6,
respectively. In section 7 we consider some examples for which the Hausdorff dimension of
Uβ,N can be calculated explicitly.
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2. Preliminary and main results

Given an integer N � 2, for any β ∈ (1, N) the set �β,N is a closed interval, i.e.
�β,N = [0, (N − 1)/(β − 1)]. Then any real number in this interval �β,N has a β-expansion,
some of them may have multiple β-expansions. Among these expansions we define the
so-called greedy β-expansion (bi(x)) = (bi) of x ∈ �β,N recursively as follows (see [29]).
For x ∈ �β,N , if bi has already been defined for 1 � i < n (no condition if n = 1), then bn is
the largest element in {0, 1, · · · , N − 1} satisfying

b1

β
+

b2

β2
+ · · · +

bn

βn
� x.

One can verify that (bi) is indeed a β-expansion of x. Moreover, (bi) is the largest β-expansion
of x in the sense of lexicographical order among all β-expansions of x.

Accordingly, we define the so-called quasi-greedyβ-expansion (ai(x)) = (ai)ofx ∈ �β,N

recursively as follows (see [13]). For x = 0 we set (ai) = 0∞. For x ∈ �β,N \ {0}, if ai has
already been defined for 1 � i < n (no condition if n = 1), then an is the largest element in
{0, 1, · · · , N − 1} satisfying

a1

β
+

a2

β2
+ · · · +

an

βn
< x.

One can also verify that (ai) is indeed a β-expansion of x. Clearly, the quasi-greedy
β-expansion of x is the largest infinite β-expansion of x in the sense of lexicographical order
among all β-expansions of x. Here we call a β-expansion infinite if the expansion has infinitely
many non-zero elements.

For a positive integer p let {0, 1, · · · , N − 1}p be the set of blocks c1 · · · cp of length
p with each element ci ∈ {0, 1, · · · , N − 1}. For two blocks c1 · · · cp and d1 · · · dq let
c1 · · · cpd1 · · · dq ∈ {0, 1, · · · , N − 1}p+q denote their concatenation. In particular, let
(c1 · · · cp)k denote the k times concatenations of c1 · · · cp to itself, and let (c1 · · · cp)∞ denote
the infinite concatenations of c1 · · · cp to itself. For a digit c ∈ {0, 1, · · · , N − 1} its reflection
c is defined by

c := N − 1 − c.

Accordingly, if ci ∈ {0, 1, · · · , N − 1} for i � 1, we shall also write c1 · · · cn instead of
c1 · · · cn, and c1c2 · · · instead of c1 c2 · · ·. Finally, for a block c1 · · · cp ∈ {0, 1, · · · , N − 1}p
with cp > 0 we set

c1 · · · c−
p := c1 · · · cp−1(cp − 1).

Similarly, for a block c1 · · · cp ∈ {0, 1, · · · , N − 1}p with cp < N − 1 we set

c1 · · · c+
p := c1 · · · cp−1(cp + 1).

In particular, when p = 1 we set c1 · · · c−
p = c−

1 = c1 − 1 and c1 · · · c+
p = c+

1 = c1 + 1.
In the following we will use lexicographical order between blocks and sequences.

Definition 2.1. A block t1 · · · tp ∈ {0, 1, · · · , N−1}p is called an admissible block if tp < N−1
and for any 1 � i � p we have

t1 · · · tp � ti · · · tpt1 · · · ti−1 and ti · · · t+
p t1 · · · ti−1 � t1 · · · t+

p.

Clearly, there exist infinitely many admissible blocks. In the following we introduce a
generalized Thue–Morse sequence which plays an essential role in this paper.
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Definition 2.2. For a block t1 · · · tp ∈ {0, 1, · · · , N−1}p with tp < N−1, we call the sequence
(θi) = (θi(t1 · · · t+

p)) a generalized Thue–Morse sequence generated by the block t1 · · · t+
p if

(θi) can be defined by induction as follows. First, we set

θ1 · · · θp = t1 · · · t+
p.

Then, if θ1 · · · θ2mp is already defined for some nonnegative integer m, we set

θ2mp+1 · · · θ2m+1p = θ1 · · · θ2mp
+.

We first discovered the generalized Thue–Morse sequences from the work of De Vries and
Komornik [13]. Later, we found that these sequences were previously studied by Allouche
and Cosnard [1], Komornik and Loreti [24], et al.

If N = 2k+1, then the sequence (λi(N)) defined in equation (3) is exactly the generalized
Thue–Morse sequence (θi(k + 1)). If N = 2k, using lemma 4.6 one can also show that
(λi(N)) = (θi(k)). Thus, for any N � 2 we have

(λi(N)) =
(

θi

(⌈
N

2

⌉))
,

where �x� denotes the least integer larger than or equal to x.
In the rest of the paper we will reserve the notation (αi(β)) especially for the quasi-greedy

β-expansion of 1 ∈ �β,N = [0, (N − 1)/(β − 1)] (since β ∈ (1, N)).

Theorem 2.3. For N � 2, let t1 · · · tp ∈ {0, 1, · · · , N − 1}p. Then t1 · · · tp is an admissible
block if and only if (αi(βL)) = (t1 · · · tp)∞ and (αi(βU)) = (θi(t1 · · · t+

p)) for some bases
βL, βU ∈ [GN, N), where GN is the critical base defined in (2). Moreover, βL < βU , and βL

is algebraic while βU is transcendental.

We point out that theorem 2.3 generalizes some results in [2] and [23]. Here we call the
transcendental numbers βU De Vries–Komornik constants since these numbers were first
studied by De Vries and Komornik in [13]. Later in proposition 4.3 and theorem 4.4 we
will show that t1 · · · tp is an admissible block if and only if (αi(βU)) = (θi(t1 · · · t+

p)), if and
only if (θi(t1 · · · t+

p)) is the unique βU -expansion of 1.

Definition 2.4. The closed interval [βL, βU ] given in theorem 2.3 is called an admissible
interval generated by t1 · · · tp (simply called, admissible interval) if

(αi(βL)) = (t1 · · · tp)∞ and (αi(βU)) = (θi(t1 · · · t+
p)).

Since we have infinitely many admissible intervals, it is worthwhile to investigate the size of
union of these admissible intervals and the relationship between them as well.

Theorem 2.5. The union of all admissible intervals covers almost every point of (βc(N), N),
where βc(N) is the Komornik–Loreti constant. Moreover, for any two admissible intervals
[αL, αU ] and [βL, βU ], either [αL, αU ] ∩ [βL, βU ] = ∅ or αU = βU .

Theorem 2.5 says that for any two admissible intervals, either they are separated from each
other or they have the same right endpoint. Now we state our main result on the Hausdorff
dimension of Uβ,N .

Theorem 2.6. For N � 2, let [βL, βU ] be an admissible interval generated by t1 · · · tp. Then
for any β ∈ [βL, βU ] the Hausdorff dimension of Uβ,N is given by

dimH Uβ,N = h(Zt1···tp )
log β

,

where h(Zt1···tp ) is the topological entropy of the subshift of finite type

Zt1···tp := {
(di) : t1 · · · tp � dn · · · dn+p−1 � t1 · · · tp, n � 1

}
.
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We point out that when N = 2 Barrera [8] investigated the topological entropy of Uβ,N . We
also point out that theorem 2.6 generalizes some results in [5,12,20,21]. This will be explained
in section 7 via some examples for which the Hausdorff dimension of Uβ,N can be calculated
explicitly.

3. Properties of unique expansions

Recall that (αi(β)) is the quasi-greedy β-expansion of 1. The following characterization
of (αi(β)) can be proved by a slight modification of the proof of [13, proposition 2.3] (see
also, [6, theorem 2.2]).

Proposition 3.1. Let N � 2 and (αi(β)) be the quasi-greedy β-expansion of 1 w.r.t. the digit
set {0, 1, · · · , N − 1}. Then the map β → (αi(β)) is a strictly increasing bijection from the
interval (1, N ] onto the set of all infinite sequences (γi) ∈ {0, 1, · · · , N − 1}∞ satisfying

γk+1γk+2 · · · � γ1γ2 · · · for all k � 0.

Moreover, the map β → (αi(β)) is continuous w.r.t. the topology in {0, 1, · · · , N−1}∞ induced
by the metric defined by d

(
(ci), (di)

) = 2− min{j :cj �=dj }.

In the following we will write (αi) instead of (αi(β)) for the quasi-greedy β-expansion
of 1 if no confusion arises for β. The following proposition for the characterization of greedy
expansions can be proved in a similar way as in [15] (see also, [6, theorem 3.2]).

Proposition 3.2. For N � 2 and β ∈ (1, N ], (bi(x)) = (bi) is the greedy β-expansion of
some x ∈ [0, (N − 1)/(β − 1)] if and only if

bn+1bn+2 · · · < α1α2 · · ·
whenever bn < N − 1.

By proposition 3.2 we have an equivalent characterization for the greedy expansions (see
also [6, 13]).

Proposition 3.3. For N � 2 and β ∈ (1, N ], (bi) = (bi(x)) is the greedy β-expansion of
some x ∈ [0, (N − 1)/(β − 1)] if and only if

bn+k+1bn+k+2 · · · < α1α2 · · · (4)

for all k � 0 whenever bn < N − 1.

Proof. The sufficiency follows directly by taking k = 0 in equation (4) and then using
proposition 3.2. For the necessity, suppose (bi) is the greedy expansion of some x, and
suppose bn < N − 1 for some n � 1. By proposition 3.2 we have

bn+1bn+2 · · · < α1α2 · · · . (5)

We claim that bn+2bn+3 · · · < α1α2 · · · .
If bn+1 < N − 1, proposition 3.2 yields the claim. If bn+1 = N − 1, equation (5) implies

that α1 = N − 1 and therefore

bn+2bn+3 · · · < α2α3 · · · � α1α2 · · · ,
where the second inequality follows from proposition 3.1.

By induction, we have bn+k+1bn+k+2 · · · < α1α2 · · · for all k � 0. �
Note that an expansion (di) = (di(x)) is the unique expansion of x ∈ Uβ,N if and only if

both (di) and (di) are the greedy expansions (see [15]). By using proposition 3.3 we have the
following characterization of Uβ,N .
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Theorem 3.4. For β ∈ (1, N ], let (αi) = (αi(β)) be the quasi-greedy β-expansion of 1. Then
x ∈ Uβ,N if and only if the β-expansion (di) = (di(x)) of x satisfies{

dm+k+1dm+k+2 · · · < α1α2 · · · ,
dn+k+1dn+k+2 · · · < α1α2 · · · ,

for all k � 0, where m is the least integer such that dm < N − 1 and n is the least integer such
that dn > 0.

In terms of theorem 3.4 we can simplify the calculation of the Hausdorff dimension of Uβ,N

as described in the following theorem.

Theorem 3.5. For N � 2 and β ∈ (1, N ], let (αi) = (αi(β)). Then we have

dimH Uβ,N = dimH Wβ,N ,

where

Wβ,N :=
{ ∞∑

i=1

di

βi
: α1α2 · · · < dndn+1 · · · < α1α2 · · · , n � 1

}
.

Proof. Clearly, by theorem 3.4 we have Wβ,N ⊆ Uβ,N . In terms of the properties of Hausdorff
dimension it suffices to show that

Uβ,N ⊆
N−2⋃
d=1

d + Wβ,N

β
∪

∞⋃
n=1

N−1⋃
d=1

d + Wβ,N

βn+1

∪
∞⋃

m=1

N−2⋃
d=0

( m∑
	=1

N − 1

β	
+

d + Wβ,N

βm+1

)
.

(6)

Let x ∈ Uβ,N and (di) = (di(x)) be its unique β-expansion. We will finish the proof by
showing in the following three cases that x is also in the right-hand side of (6).

Case I. 0 < d1 < N − 1. Then by theorem 3.4 it follows that

α1α2 · · · < dk+1dk+2 · · · < α1α2 · · ·
for all k � 1, i.e., d2d3 · · · ∈ �−1

β (Wβ,N ) where �β is the projection map defined in (1).
Case II. d1 = 0. Then by theorem 3.4 it yields that

dk+1dk+2 · · · < α1α2 · · ·
for all k � 1. Let n be the least integer such that dn > 0. Again by theorem 3.4 it follows that
dn+1dn+2 · · · ∈ �−1

β (Wβ,N ).
Case III. d1 = N − 1. Then in a similar way as in case II we have dm+1dm+2 · · · ∈

�−1
β (Wβ,N ), where m is the least integer such that dm < N − 1. �

Clearly, �−1
β (Wβ,N ) is a symmetric subshift of {0, 1, · · · , N − 1}∞. According to

theorem 3.5 it suffices to prove theorem 2.6 for Wβ,N instead of Uβ,N .

4. Proof of theorem 2.3

Suppose that t1 · · · tp ∈ {0, 1, · · · , N − 1}p is an admissible block. Then by definition 2.1 it
follows

t1 · · · tp � ti · · · tpt1 · · · ti−1 < ti · · · t+
p t1 · · · ti−1 � t1 · · · t+

p (7)

for any 1 � i � p. The following proposition guarantees that (t1 · · · tp)∞ is a quasi-greedy
expansion of 1 for some base βL ∈ (1, N ].
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Proposition 4.1. Let t1 · · · tp ∈ {0, 1, · · · , N − 1}p be an admissible block. Then (αi(βL)) =
(t1 · · · tp)∞ for some base βL ∈ (1, N ].

Proof. Since t1 · · · tp ∈ {0, 1, · · · , N − 1}p is an admissible block, by (7) it follows that

ti · · · tpt1 · · · ti−1 � t1 · · · tp
for any 1 � i � p. This yields

ti · · · tp(t1 · · · tp)∞ = (ti · · · tpt1 · · · ti−1)
∞ � (t1 · · · tp)∞.

Then by proposition 3.1 we have (αi(βL)) = (t1 · · · tp)∞ for some βL ∈ (1, N ]. �

Note that β > 1 is a purely Parry number if (αi(β)) is periodic. Hence, the base βL

defined in proposition 4.1 is a purely Parry number. Later in proposition 4.5 we will show that
βL � GN . Recall from definition 2.2 that (θi) = (θi(t1 · · · t+

p)) is a generalized Thue–Morse
sequence. We will show in proposition 4.3 that if t1 · · · tp is admissible, then (θi) is also a
quasi-greedy expansion of 1 for some base βU . First we give the following lemma.

Lemma 4.2. Let t1 · · · tp be an admissible block and let (θi) = (θi(t1 · · · t+
p)) be the generalized

Thue–Morse sequence generated by t1 · · · t+
p . Then for any n � 0 we have

θ1 · · · θ2np−i+1 < θi · · · θ2np � θ1 · · · θ2np−i+1 (8)

for any 1 � i � 2np.

Proof. We will prove (8) using induction on n. Since t1 · · · tp is an admissible block, it follows
from equation (7) that

θ1 · · · θp−i+1 � ti · · · tp < ti · · · t+
p = θi · · · θp � θ1 · · · θp−i+1

for any 1 � i � p. Then (8) holds for n = 0.
Suppose (8) holds for n = k. We will split the proof of (8) for n = k + 1 into the following

two cases.
Case I. 1 � i � 2kp. Then by induction we have θi · · · θ2kp > θ1 · · · θ2kp−i+1, which

yields

θi · · · θ2k+1p > θ1 · · · θ2k+1p−i+1.

Again by induction we have θi · · · θ2kp � θ1 · · · θ2kp−i+1, and for any 2 � i � 2kp,

θ2kp+1 · · · θ2kp+i−1 = θ1 · · · θi−1 < θ2kp−i+2 · · · θ2kp,

where the inequality holds by the induction. Then

θ1 · · · θ2k+1p−i+1 < θi · · · θ2k+1p � θ1 · · · θ2k+1p−i+1

for any 1 � i � 2kp.
Case II. 2kp < i � 2k+1p. Then we can write i = 2kp + j with 1 � j � 2kp. By

induction and definition 2.2 of the generalized Thue–Morse sequence (θi) it follows that

θ1 · · · θ2k+1p−i+1 < θj · · · θ2kp
+ = θi · · · θ2k+1p � θ1 · · · θ2k+1p−i+1

for any 2kp < i = 2kp + j � 2k+1p. �

Proposition 4.3. The block t1 · · · tp ∈ {0, 1, · · · , N − 1}p is admissible if and only if
(αi(βU)) = (θi(t1 · · · t+

p)) for some base βU ∈ (1, N ].
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Proof. We first prove the sufficiency. Suppose (αi(βU)) = (θi(t1 · · · t+
p)) for some βU ∈

(1, N ]. By definition 2.2 the generalized Thue–Morse sequence (θi(t1 · · · t+
p)) begins with

(θi(t1 · · · t+
p)) = t1 · · · t+

p t1 · · · tp t1 · · · t+
p t1 · · · t+

p · · · . (9)

Then by proposition 3.1 it follows that

ti · · · t+
pt1 · · · ti−1 � t1 · · · t+

p and ti · · · tpt1 · · · ti−1 � t1 · · · t+
p

for any 1 � i � p. By definition 2.1 it suffices to show that ti · · · tpt1 · · · ti−1 �= t1 · · · t+
p for

all 1 � i � p.
Suppose ti · · · tpt1 · · · ti−1 = t1 · · · t+

p for some 1 � i � p. Then by proposition 3.1 and
equation (13) it follows that

ti · · · t+
p � t1 · · · tp−i+1.

Observing by proposition 3.1 that ti · · · t+
p � t1 · · · tp−i+1 we obtain

ti · · · tpt1 · · · t+
p = t1 · · · t+

pt1 · · · tp−i+1.

This implies that i �= 1. Again by proposition 3.1 and equation (13) we obtain

t1 · · · ti−1 = tp−i+2 · · · tp for 2 � i � p.

This leads to a contradiction with the assumption that ti · · · tpt1 · · · ti−1 = t1 · · · t+
p .

In the following we will show the necessity. Let i � 1. Then i < 2np for some large
integer n � 0. By lemma 4.2 it follows that

θi+1 · · · θ2np � θ1 · · · θ2np−i and θ1 · · · θi < θ2np−i+1 · · · θ2np.

This implies

θi+1 · · · θ2npθ2np+1 · · · θ2np+i · · · = θi+1 · · · θ2npθ1 · · · θi · · ·
< θ1 · · · θ2np−iθ2np−i+1 · · · θ2np · · · .

By proposition 3.1 this establishes the proposition. �

Moreover, using lemma 4.2 one can show that (θi) is the unique βU -expansion of 1.

Theorem 4.4. Let t1 · · · tp ∈ {0, 1, · · · , N − 1}p. Then t1 · · · tp is an admissible block if and
only if the generalized Thue–Morse sequence (θi) = (θi(t1 · · · t+

p)) is the unique expansion of
1 for some base βU , i.e.

θ1θ2 · · · < θi+1θi+2 · · · < θ1θ2 · · · for any i � 1.

Recall from (2) that GN is the generalized golden ratio. We will show that the admissible
intervals are all included in [GN, N). In proposition 5.2 we will show that all of these admissible
intervals cover (βc(N), N) a.e., where βc(N)(> GN) is the Komornik–Loreti constant.

Proposition 4.5. Let [βL, βU ] be an admissible interval generated by t1 · · · tp. Then
[βL, βU ] ⊆ [GN, N).

Proof. Clearly, by definition 2.2 of the generalized Thue–Morse sequence (θi) = (θi(t1 · · · t+
p))

it follows that

(αi(βU)) = (θi) < (N − 1)∞ = (αi(N)).

By proposition 3.1 this implies βU < N . In the following we will show βL � GN .
Since t1 · · · tp is admissible, it yields that t1 � t1 = N −1−t1. Then t1 � �(N −1)/2�. By

definition 2.1 of an admissible block one can directly verify that (t1 · · · tp)∞ � (t1t1)
∞ (see also
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[3, proposition 2]). Note by (2) that (αi(GN)) = (t1 · · · tp)∞ = (�(N −1)/2��(N − 1)/2�)∞.

Then

(αi(βL)) = (t1 · · · tp)∞ � (t1t1)
∞ � (αi(GN)).

By proposition 3.1 this implies βL � GN . �
In the following we will investigate the algebraic properties of the generalized Thue–Morse
sequences (θi) and show that the De Vries–Komornik constant βU is transcendental. Recall
that (τi)

∞
i=0 is the classical Thue–Morse sequence beginning with

0110 1001 1001 0110 1001 0110 0110 1001 · · · .
We write two equivalent definitions for this sequence (τi) (see, e.g., [4] for details).

(I) Set τ0 = 0, τ2n = 1 for n = 0, 1, · · · , and

τ2n+k = 1 − τk if 1 � k < 2n, n = 1, 2, · · · .
(II) For a nonnegative integer i we consider its dyadic expansion

i = εn2n + εn−12n−1 + · · · + ε0, εk ∈ {0, 1}.
Then we set

τi =
{

0 if
∑n

j=0 εj is even,

1 if
∑n

j=0 εj is odd.

Based on (τi) we give an equivalent definition for the generalized Thue–Morse sequence (θi).

Lemma 4.6. Let (θi) = (θi(t1 · · · t+
p)) be the generalized Thue–Morse sequence generated by

t1 · · · t+
p . Then for any integer 	 = ip + q with i � 0, 1 � q � p we have

θ	 =
{
tq + τi(tq − tq), if 1 � q < p

tq + τi(tq − tq) + (τi+1 − τi), if q = p.
(10)

Proof. Recall from definition 2.2 that (ηi) is the generalized Thue–Morse sequence generated
by t1 · · · t+

p if and only if η1 · · · ηp = t1 · · · t+
p , and for any n � 0 we have

η2n+1p = η2np + 1 = N − η2np, η2np+k = ηk for all 1 � k < 2np. (11)

Clearly, using τ0 = 0, τ1 = 1 in equation (10) it yields that θ1 · · · θp = t1 · · · t+
p . Then it

suffices to show that the sequence (θi) given in equation (10) satisfies the conditions in (11).
For n � 0, using definition (I) of (τi) and equation (10) it follows that

θ2n+1p + θ2np

= (
tp + τ2n+1−1(tp − tp) + (τ2n+1 − τ2n+1−1)

)
+

(
tp + τ2n−1(tp − tp) + (τ2n − τ2n−1)

)
= tp + (1 − τ2n−1)(tp − tp) + (1 − (1 − τ2n−1))

+ tp + τ2n−1(tp − tp) + (1 − τ2n−1)

= tp + tp + 1 = N,

i.e., θ2n+1p = N − θ2np = θ2np + 1.
For 1 � k < 2np we can write k = (εn−12n−1 + · · · + ε121 + ε0)p + q with

εn−1, · · · , ε0 ∈ {0, 1} and 1 � q � p. Without loss of generality we may assume 1 � q < p.
If

∑n−1
j=0 εj is even, then using definition (II) of (τi) and equation (10) it follows that

θk = θ(
∑n−1

j=0 εj 2j )p+q = tq + 0(tq − tq) = tq ,
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and

θ2np+k = θ(2n+
∑n−1

j=0 εj 2j )p+q = tq + 1(tq − tq) = tq .

Hence, θ2np+k = θk . Similarly, if
∑n−1

j=0 εj is odd , one can also show that θ2np+k = θk . �

The following theorem for transcendental numbers is due to Mahler [27] (see also [23]).

Theorem 4.7 (Mahler [27]). If z is an algebraic number in the open unit disc, then the number

Z :=
∞∑
i=1

τiz
i

is transcendental, where (τi) is the classical Thue–Morse sequence.

Proof of theorem 2.3. Clearly, by proposition 3.1 βL < βU . By propositions 4.1, 4.3 and 4.5
it remains to show that the De Vries–Komornik constant βU is transcendental.

Let (θ	) = (θ	(t1 · · · t+
p)) be the generalized Thue–Morse sequence generated by the block

t1 · · · t+
p . By the definition of βU we have

1 =
∞∑

	=1

θ	βU
−	.

For any integer 	 � 1, let 	 = ip + q with i � 0 and 1 � q � p. Then using lemma 4.6 we
can rewrite the above equation as follows.

1 =
∞∑

	=1

θ	βU
−	 =

∞∑
i=0

p∑
q=1

θip+qβU
−ip−q

=
∞∑
i=0

βU
−ip

( p∑
q=1

(
tq + τi(tq − tq)

)
βU

−q + (τi+1 − τi)βU
−p

)

=
∞∑
i=0

βU
−ip

( p∑
q=1

tqβU
−q

)
+

∞∑
i=0

τiβU
−ip

( p∑
q=1

(tq − tq)βU
−q

)

+
∞∑
i=0

(τi+1 − τi)βU
−ip−p

=
∑p

q=1 tqβU
−q

1 − βU
−p

+
( ∞∑

i=1

τi(βU
−p)i

)( p∑
q=1

(tq − tq)βU
−q

)

+
∞∑
i=1

τi(βU
−p)i − βU

−p

∞∑
i=1

τi(βU
−p)i,

where the last equality holds since τ0 = 0. Rearranging the above equation it gives
∞∑
i=1

τi(βU
−p)i = 1 − βU

−p − ∑p

q=1 tqβU
−q

(1 − βU
−p)

(
1 − βU

−p +
∑p

q=1(tq − tq)βU
−q

) .

If βU > 1 is an algebraic number, then the right-hand side would be algebraic, while the
left-hand side would be transcendental by theorem 4.7. This contradiction implies that βU is
transcendental. �
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5. Proof of theorem 2.5

First we will show that all of the admissible intervals cover almost every point of (βc(N), N).
Let U be the set of β ∈ (1, N ] for which 1 ∈ �β,N has a unique β-expansion, i.e. there
exists a unique sequence (di) ∈ {0, 1, · · · , N − 1}∞ such that 1 = ∑∞

i=1 di/β
i . Let U be the

closure of U . The following proposition for U was first proved by Komornik and Loreti [24]
for β ∈ [N − 1, N ] and recently proved by Komornik et al in [22].

Proposition 5.1. For β ∈ (1, N ] let (αi) = (αi(β)) be the quasi-greedy β-expansion of 1.
Then β ∈ U if and only if

α1α2 · · · < αk+1αk+2 · · · � α1α2 · · · for all k � 0.

Moreover, U has zero Lebesgue measure.

Proposition 5.2. The union of all admissible intervals covers (βc(N), N) a.e..

Proof. By proposition 5.1 it suffices to show that (βc(N), N) is covered by U and the union
of all admissible intervals. Take β ∈ (βc(N), N), and let (αi) = (αi(β)) be the quasi-greedy
β-expansion of 1. By proposition 3.1 it gives

αk+1αk+2 · · · � α1α2 · · · for any k � 0. (12)

Suppose β /∈ U . By proposition 5.1 it follows that there exists q � 0 such that

αq+1αq+2 · · · � α1α2 · · ·. (13)

Let m be the least integer q satisfying (13). Since β > βc(N), by proposition 3.1 we have
α1 > α1. Then m � 1, and one can verify that αm > 0. We will finish the proof by showing
that β is contained in the admissible interval [βL, βU ] generated by α1 · · · α−

m .
First we will show the admissibility of α1 · · · α−

m . Since β > βc(N), by proposition 3.1

it follows that either α−
1 � α−

1 or α2 � k = α1 > α1 with N = 2k. If m = 1, then by the

definition of m it gives that α−
1 � α−

1 . This yields the admissibility of α−
1 . In the following

we will assume m � 2. Since m is the least integer satisfying (13), it follows that

αi · · · αm � α1 · · · αm−i+1 for any 1 � i � m.

We claim that αi · · · αm > α1 · · · αm−i+1 for any 1 � i � m.
Suppose αi · · · αm = α1 · · · αm−i+1 for some 1 � i � m. Then by the minimality of m

and (12) we have

αm+1αm+2 · · · > αm−i+2αm−i+3 · · · � α1α2 · · ·,
leading to a contradiction with (13).

Hence, αi · · · αm > α1 · · · αm−i+1 for any 1 � i � m. This, together with (12), implies
that

α1 · · · α−
m � αi · · · α−

mα1 · · · αi−1 and αi · · · αmα1 · · · αi−1 � α1 · · · αm,

for any 1 � i � m. By definition 2.1 α1 · · · α−
m is admissible.

Now we will show that β ∈ [βL, βU ] with (αi(βL)) = (α1 · · · α−
m)∞ and (αi(βU)) =

(θi(α1 · · · αm)). This can be verified using proposition 3.1 in the following equation.

(α1 · · · α−
m)∞ < α1α2 · · · < α1 · · · αm α1 · · · αm

+ · · · = (θi(α1 · · · αm)),

where the second inequality follows by (13). �
By theorem 2.6 and the proof of proposition 5.2 we are able to calculate the Hausdorff

dimension of Uβ,N for any β ∈ (βc(N), N) \ U .
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Corollary 5.3. For β ∈ (βc(N), N) \ U , let (αi) = (αi(β)) and let m be the least integer
satisfying

αm+1αm+2 · · · � α1α2 · · ·.
Then dimH Uβ,N = h(Zα1···α−

m
)/ log β, where h(Zα1···α−

m
) is the topological entropy of

Zα1···α−
m

= {(di) : α1 · · · α−
m � dn · · · dn+m−1 � α1 · · · α−

m, n � 1}.
In the following we will investigate the relationship between any two admissible intervals.

Let [αL, αU ] and [βL, βU ] be two admissible intervals generated by s1 · · · sq and t1 · · · tp,
respectively. Then by definition 2.4

(αi(αL)) = (s1 · · · sq)
∞, (αi(αU)) = (θi(s1 · · · s+

q )),

and

(αi(βL)) = (t1 · · · tp)∞, (αi(βU)) = (θi(t1 · · · t+
p)).

We will prove that αL < βU implies αU � βU . By proposition 3.1 this is equivalent to showing

(s1 · · · sq)
∞ < (θi(t1 · · · t+

p)) �⇒ (θi(s1 · · · s+
q )) � (θi(t1 · · · t+

p)). (14)

We will split the proof of (14) into the following two cases: Case I. 1 � q < p (see lemma 5.5).
Case II. q � p (see lemma 5.6). First we give the following lemma.

Lemma 5.4. Let t1 · · · tp be an admissible block. Then for any q < p/2 we have t1 · · · tq + �
tq+1 · · · t2q .

Proof. Suppose t1 · · · tq + > tq+1 · · · t2q for some q < p/2. Write p = m2q+j with m � 1 and
0 < j � 2q. Since t1 · · · tp is an admissible block, by (7) it yields that tq+1 · · · t2q � t1 · · · tq .
Hence,

t1 · · · t2q = t1 · · · tq t1 · · · tq .
Again by (7) it follows that

tq+1 · · · t3q = t1 · · · tq t2q+1 · · · t3q � t1 · · · t2q = t1 · · · tq t1 · · · tq ,
and t2q+1 · · · t3q � t1 · · · tq . This yields t2q+1 · · · t3q = t1 · · · tq .

By iteration, one can show that

t1 · · · tp = t1 · · · tm2q+j = (t1 · · · tq t1 · · · tq)mt1 · · · tj = (t1 · · · t2q)
mt1 · · · tj .

This is impossible since otherwise we have by (7) that

t1 · · · t+
j = tp−j+1 · · · t+

p � t1 · · · tj . �

Lemma 5.5. Let s1 · · · sq and t1 · · · tp be two admissible blocks with 1 � q < p. If
(s1 · · · sq)

∞ < (θi(t1 · · · t+
p)), then (θi(s1 · · · s+

q )) � (θi(t1 · · · t+
p)).

Proof. Suppose

(s1 · · · sq)
∞ < (θi(t1 · · · t+

p)) =: (ηi). (15)

Then s1 · · · sq � η1 · · · ηq . We claim that s1 · · · sq < η1 · · · ηq .
If s1 · · · sq = η1 · · · ηq , then by (15) and theorem 4.4 it follows that

s1 · · · sq � ηq+1 · · · η2q � η1 · · · ηq = s1 · · · sq .

This yields η1 · · · η2q = (s1 · · · sq)
2. By iteration, we have (ηi) = (s1 · · · sq)

∞, leading to a
contradiction with (15).
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Hence, s1 · · · sq < η1 · · · ηq , i.e., s1 · · · s+
q � η1 · · · ηq . Set (ξi) := (θi(s1 · · · s+

q )). Clearly,
if ξ1 · · · ξq = s1 · · · s+

q < η1 · · · ηq , then (ξi) < (ηi). Now we assume

ξ1 · · · ξq = η1 · · · ηq and p = 2nq + j

with n � 0 and 0 < j � 2nq. We will split the proof of (ξi) � (ηi) into the following two
cases.

Case I. n = 0. Then p = q + j for 0 < j � q. By definition 2.2 and lemma 4.2 it follows
that for 0 < j < q

ξq+1 · · · ξq+j = ξ1 · · · ξj = η1 · · · ηj < ηp−j+1 · · · ηp = ηq+1 · · · ηq+j ,

and for j = q,

ξq+1 · · · ξ2q = ξ1 · · · ξq
+ = η1 · · · ηq

+ � ηq+1 · · · η2q .

Then by definition 2.2 we obtain that (ξi) � (ηi).
Case II. n � 1. Then q < p/2. By definition 2.2 and lemma 5.4 it follows that

ξ1 · · · ξ2q = ξ1 · · · ξqξ1 · · · ξq
+ = η1 · · · ηqη1 · · · ηq

+ � η1 · · · η2q .

If ξ1 · · · ξ2q < η1 · · · η2q , then (ξi) < (ηi). Suppose ξ1 · · · ξ2q = η1 · · · η2q . Then by iteration
we have

ξ1 · · · ξ2nq � η1 · · · η2nq .

Clearly, if ξ1 · · · ξ2nq < η1 · · · η2nq , then (ξi) < (ηi). Now suppose ξ1 · · · ξ2nq = η1 · · · η2nq . In
a similar way as in case I, one can show by definition 2.2 and lemma‘4.2 that ξ2nq+1 · · · ξ2nq+j <

η2nq+1 · · · η2nq+j if 0 < j < 2nq, and ξ2nq+1 · · · ξ2n+1q � η2nq+1 · · · η2n+1q if p = 2n+1q. Then
(ξi) � (ηi). �

Lemma 5.6. Let s1 · · · sq and t1 · · · tp be two admissible blocks with q � p. If (s1 · · · sq)
∞ <

(θi(t1 · · · t+
p)), then (θi(s1 · · · s+

q )) � (θi(t1 · · · t+
p)).

Proof. Suppose

(s1 · · · sq)
∞ < (θi(t1 · · · t+

p)) = (ηi) and q = 2np + j (16)

with n � 0 and 0 � j < 2np. Then s1 · · · s2np � η1 · · · η2np. If s1 · · · s2np < η1 · · · η2np, then
by definition 2.2 it follows that

(θi(s1 · · · s+
q )) = s1 · · · s2nps2np+1 · · · < (ηi) = (θi(t1 · · · t+

p)).

We will finish the proof by showing that s1 · · · s2np �= η1 · · · η2np.
Suppose s1 · · · s2np = η1 · · · η2np. We claim that

s1 · · · sq = η1 · · · ηq. (17)

Clearly, if j = 0, i.e. q = 2np, then (17) holds. Now we assume 0 < j < 2np. By (16) and
definition 2.2 it follows that

s2np+1 · · · s2np+j � η2np+1 · · · η2np+j = η1 · · · ηj .

Also by the admissibility of s1 · · · sq we have

s2np+1 · · · s2np+j � s1 · · · sj = η1 · · · ηj .

Then s2np+1 · · · s2np+j = η1 · · · ηj = η2np+1 · · · η2np+j which yields equation (17).
Using equation (17) in (16) it follows from theorem 4.4 that

s1 · · · sq � ηq+1 · · · η2q � η1 · · · ηq = s1 · · · sq .
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Then ηq+1 · · · η2q = s1 · · · sq . By iteration, we have

(θi(t1 · · · t+
p)) = (ηi) = (s1 · · · sq)

∞,

leading to a contradiction with (16). �
In the following we will prove that αL > βL implies αU � βU . By proposition 3.1 this is

equivalent to showing

(s1 · · · sq)
∞ > (t1 · · · tp)∞ �⇒ (θi(s1 · · · s+

q )) � (θi(t1 · · · t+
p)). (18)

The proof of (18) will also be split into the following two cases. Case I. 1 � q < p (see
lemma 5.7). Case II. q � p (see lemma 5.9).

Lemma 5.7. Let s1 · · · sq and t1 · · · tp be two admissible blocks with 1 � q < p. If
(s1 · · · sq)

∞ > (t1 · · · tp)∞, then (θi(s1 · · · s+
q )) � (θi(t1 · · · t+

p)).

Proof. Suppose

(s1 · · · sq)
∞ > (t1 · · · tp)∞ and p = nq + j (19)

with n � 1 and 1 � j � q. Then (s1 · · · sq)
ns1 · · · sj � t1 · · · tnq+j = t1 · · · tp. If

(s1 · · · sq)
ns1 · · · sj = t1 · · · tp, then

tp−j+1 · · · tp = s1 · · · sj = t1 · · · tj ,
leading to a contradiction with the admissibility of t1 · · · tp. So, (s1 · · · sq)

ns1 · · · sj > t1 · · · tp,
i.e., (s1 · · · sq)

ns1 · · · sj � t1 · · · t+
p . Then by definition 2.2 it follows that

(θi(s1 · · · s+
q )) > (s1 · · · sq)

ns1 · · · sj (N − 1)∞ � (θi(t1 · · · t+
p)). �

When (s1 · · · sq)
∞ > (t1 · · · tp)∞ with q � p, it is more involved to prove (θi(s1 · · · s+

q )) �
(θi(t1 · · · t+

p)). First we consider the following lemma.

Lemma 5.8. Let s1 · · · sq and t1 · · · tp be two admissible blocks with q � p. If s1 · · · sp >

t1 · · · tp, then (θi(s1 · · · s+
q )) � (θi(t1 · · · t+

p)).

Proof. Write q = 2np + j with n � 0 and 0 � j < 2np. Suppose s1 · · · sp > t1 · · · tp, i.e.

s1 · · · sp � t1 · · · t+
p = (θi(t1 · · · t+

p))
p

i=1.

Clearly, if s1 · · · sp > t1 · · · t+
p , then by definition 2.2 it yields (θi(s1 · · · s+

q )) � (θi(t1 · · · t+
p)).

Now we assume s1 · · · sp = t1 · · · t+
p , and split the proof into the following three cases.

Case I. p � q < 2p. Then by the admissibility of s1 · · · sq = s1 · · · sp+j it follows that

(θi(s1 · · · s+
q )) = s1 · · · spsp+1 · · · s+

p+j · · ·
> s1 · · · sps1 · · · sj (N − 1)∞

= t1 · · · t+
pt1 · · · tj (N − 1)∞ � (θi(t1 · · · t+

p)).

Case II. q = 2p. Again by the admissibility of s1 · · · sq we have

s1 · · · s+
q = s1 · · · s+

2p � s1 · · · sps1 · · · sp
+ = t1 · · · t+

pt1 · · · tp.

This implies that (θi(s1 · · · s+
q )) � (θi(t1 · · · t+

pt1 · · · tp)) = (θi(t1 · · · t+
p)).

Case III. q > 2p. Then by the admissibility of s1 · · · sq it follows that

sp+1 · · · s2p � s1 · · · sp = t1 · · · t+
p. (20)

We claim that the inequality in (20) is strict. Otherwise, by the admissibility of s1 · · · sq we
have

s1 · · · sps2p+1 · · · s3p = sp+1 · · · s3p � s1 · · · s2p = s1 · · · sps1 · · · sp,
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and s2p+1 · · · s3p � s1 · · · sp. This implies that s2p+1 · · · s3p = s1 · · · sp. By iteration, we have
for q = 2kp + 	 with 0 < 	 � 2p,

s1 · · · sq = (s1 · · · sps1 · · · sp)ks1 · · · s	.

Then, sq−	+1 · · · sq = s1 · · · s	, leading to a contradiction with the admissibility of s1 · · · sq . So,
the inequality in (20) is strict, i.e.

s1 · · · s2p � s1 · · · sps1 · · · sp
+ = t1 · · · t+

pt1 · · · tp = (θi(t1 · · · t+
p))

2p

i=1.

Then, by induction, it follows that s1 · · · s2np � (θi(t1 · · · t+
p))

2np

i=1. Again by the same
argument as in case I we can show that (θi(s1 · · · s+

q )) � (θi(t1 · · · t+
p)). �

Lemma 5.9. Let s1 · · · sq and t1 · · · tp be two admissible blocks with q � p. If (s1 · · · sq)
∞ >

(t1 · · · tp)∞, then (θi(s1 · · · s+
q )) � (θi(t1 · · · t+

p)).

Proof. Let q = np + j with n � 1 and 0 � j < p. Suppose

(s1 · · · sq)
∞ > (t1 · · · tp)∞. (21)

Then s1 · · · sp � t1 · · · tp. By lemma 5.8 it suffices to show that s1 · · · sp �= t1 · · · tp.
Suppose s1 · · · sp = t1 · · · tp. Then by (21) and the admissibility of s1 · · · sq it gives that

s1 · · · sp � sp+1 · · · s2p � t1 · · · tp = s1 · · · sp.

Then s1 · · · s2p = (t1 · · · tp)2. By iteration, we have

s1 · · · snp = (t1 · · · tp)n. (22)

If j = 0, i.e. q = np, then (22) violates (21). If 0 < j < p, then (22) also leads to a
contradiction, since by (21) and the admissibility of s1 · · · sq it follows that

s1 · · · sj > snp+1 · · · snp+j � t1 · · · tj = s1 · · · sj . �

Proof of theorem 2.5. By proposition 5.2 it suffices to show that either [αL, αU ]∩[βL, βU ] = ∅
or αU = βU . By symmetry it suffices to show that αL ∈ [βL, βU ] implies αU = βU . This
can be verified by the following observations. By lemmas 5.5, 5.6 and proposition 3.1 it
follows that

αL < βU �⇒ αU � βU .

Moreover, by lemmas 5.7, 5.9 and proposition 3.1 it follows that

αL � βL �⇒ αU � βU .�

6. Proof of theorem 2.6

Let [βL, βU ] ⊆ [GN, N) be an admissible interval generated by t1 · · · tp, i.e.

(αi(βL)) = (t1 · · · tp)∞ and (αi(βU)) = (θi(t1 · · · t+
p)).

Using lemma 4.2 one can easily get the following lemma.

Lemma 6.1. Let t1 · · · tp be an admissible block and let (θi) = (θi(t1 · · · t+
p)). Then for any

n � 0,

σ i((θ1 · · · θ2np θ1 · · · θ2np)∞) � (θ1 · · · θ2np θ1 · · · θ2np)∞

for any i � 1, where σ is the left shift such that σ((ai)) = (ai+1).
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By lemma 6.1 and proposition 3.1 it follows that (θ1 · · · θ2n−1p θ1 · · · θ2n−1p)∞ is the quasi-greedy
expansion of 1 for some base βn ∈ (1, N ], i.e.

(αi(βn)) = (θ1 · · · θ2n−1p θ1 · · · θ2n−1p)∞. (23)

Clearly, (αi(β1)) = (θ1 · · · θp θ1 · · · θp)∞ = (t1 · · · t+
p t1 · · · t+

p)∞, and the first 2n−1p elements
of (αi(βn)) coincide with that of the generalized Thue–Morse sequence (θi(t1 · · · t+

p)). Hence,
as n → ∞ the sequence (αi(βn)) increasingly converges to the generalized Thue–Morse
sequence (θi(t1 · · · t+

p)). By proposition 3.1 it gives that βn converges to βU from the left.
Recall from theorem 3.5 that Wβ,N is defined by

Wβ,N =
{ ∞∑

i=1

di

βi
: α1α2 · · · < dndn+1 · · · < α1α2 · · · , n � 1

}
.

The following lemma investigates all possible blocks occurring in the β-expansions of points
in Wβ,N for β � β1.

Lemma 6.2. Let t1 · · · tp be an admissible block and let (αi(β1)) = (t1 · · · t+
pt1 · · · t+

p)∞. If
β � β1, then Wβ,N ⊆ �β(Zt1···tp ), where

Zt1···tp := {
(di) : t1 · · · tp � dn · · · dn+p−1 � t1 · · · tp, n � 1

}
.

Proof. Since β � β1, it follows from proposition 3.1 that (αi(β)) � (αi(β1)) =
(t1 · · · t+

pt1 · · · t+
p)∞. Take x = �β((di)) ∈ Wβ,N . Then for all n � 1,

(t1 · · · t+
pt1 · · · t+

p)∞ � (αi(β)) < dndn+1 · · · < (αi(β)) � (t1 · · · t+
pt1 · · · t+

p)∞. (24)

This implies

t1 · · · t+
p � dndn+1 · · · dn+p−1 � t1 · · · t+

p.

We will finish the proof by showing that the inequalities in the above equation are strict.
Suppose dndn+1 · · · dn+p−1 = t1 · · · t+

p . Then by equation (24) it follows that
dn+pdn+p+1 · · · dn+2p−1 � t1 · · · t+

p. Again by equation (24) we have dn+pdn+p+1 · · · dn+2p−1 �
t1 · · · t+

p. Then

dn+pdn+p+1 · · · dn+2p−1 = t1 · · · t+
p.

By iteration, we have dndn+1 · · · = (t1 · · · t+
pt1 · · · t+

p)∞, leading to a contradiction with (24).
Similarly, one can show that dndn+1 · · · dn+p−1 �= t1 · · · t+

p . �
By lemma 6.2 it yields that dimH Wβ,N � dimH �β(Zt1···tp ) for β � β1. In the following

lemma we will show that dimH Wβ,N � dimH �β(Zt1···tp ) for β � βL.

Lemma 6.3. Let t1 · · · tp be an admissible block and let (αi(βL)) = (t1 · · · tp)∞. If β � βL,
then dimH Wβ,N � dimH �β(Zt1···tp ).

Proof. By the definition of Zt1···tp it follows that (t1 · · · tp)∞ and (t1 · · · tp)∞ are the least and
the largest elements in Zt1···tp , respectively. Accordingly, let t∗ and t∗ be, respectively, the least
and the largest elements in �β(Zt1···tp ), i.e.

t∗ = �β((t1 · · · tp)∞) =
∑p

i=1 ti β
p−i

βp − 1
, t∗ = �β((t1 · · · tp)∞) =

∑p

i=1 tiβ
p−i

βp − 1
.

Set

T =
⋃
n�0

({ n∑
i=1

di

βi
+

t∗
βn

: 0 � di � N − 1
} ∪ { n∑

i=1

di

βi
+

t∗

βn
: 0 � di � N − 1

})
.
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Clearly, T is a countable set. Then it suffices to show that �β(Zt1···tp ) \ T ⊆ Wβ,N . Take
x = �β((di)) ∈ �β(Zt1···tp ) \ T . We claim that dndn+1 · · · < α1(β)α2(β) · · · for any n � 1.

Suppose that there exists n0 � 1 such that dn0dn0+1 · · · � (αi(β)). Since β � βL, by
proposition 3.1 it follows that

dn0dn0+1 · · · � (αi(β)) � (αi(βL)) = (t1 · · · tp)∞.

Since x /∈ T , we have dn0dn0+1 · · · > (t1 · · · tp)∞. Then there exists a nonnegative integer s

such that dn0dn0+1 · · · dn0+sp−1 = (t1 · · · tp)s and

dn0+spdn0+sp+1 · · · dn0+sp+p−1 > t1 · · · tp,

leading to a contradiction with x ∈ �β(Zt1···tp ). Thus, dndn+1 · · · < (αi(β)) for any n � 1.
Similarly, one can show that dndn+1 · · · > (αi(β)) for any n � 1. So x ∈ Wβ,N , and we

conclude that �β(Zt1···tp ) \ T ⊆ Wβ,N . �

In the following we will investigate the structure of �β(Zt1···tp ). If p = 1, then �β(Zt1) is
a self-similar set whose structure is well-studied (see [19]). Hence, we only need to consider
the case for p � 2. Note that (di) ∈ Zt1···tp if and only if dndn+1 · · · dn+p−1 /∈ F for any n � 1,
where

F := {
c1 · · · cp : c1 · · · cp < t1 · · · tp or c1 · · · cp > t1 · · · tp

}
.

Then Zt1···tp is a p − 1 step of shift of finite type (see [26]). We construct an edge graph
G = (G, V, E) with the vertices set V defined by

V := {
u1 · · · up−1 : t1 · · · tp−1 � u1 · · · up−1 � t1 · · · tp−1

}
.

For two vertices u = u1 · · · up−1, v = v1 · · · vp−1 ∈ V , we draw an edge uv ∈ E from u to v

and label it 	uv = u1 if u2 · · · up−1 = v1 · · · vp−2
3 and u1 · · · up−1vp−1 /∈ F . One can check

that the edge graph G = (G, V, E) is a representation of Zt1···tp .

Lemma 6.4. Let t1 · · · tp be an admissible block with p � 2 and let (αi(βL)) = (t1 · · · tp)∞.
Then for any β � βL the set �β(Zt1···tp ) is a graph-directed set satisfying the SSC.

Proof. Let G = (G, V, E) be the edge graph representing Zt1···tp . For u = u1 · · · up−1 ∈ V ,
let

Ku :=
{ ∞∑

i=1

di

βi
: di = ui, 1 � i � p − 1, and dn · · · dn+p−1 /∈ F , n � 1

}
.

For an edge uv ∈ E with u = u1 · · · up−1, v = v1 · · · vp−1 ∈ V we define the map fuv as

fuv(x) = x + 	uv

β
= x + u1

β
. (25)

We claim that for any u ∈ V ,

Ku =
⋃

uv∈E

fuv(Kv). (26)

Take �β((si)) ∈ Ku. Then s1 = u1, · · · , sp−1 = up−1; and t1 · · · tp � sn · · · sn+p−1 �
t1 · · · tp for any n � 1. This implies that

v := s2 · · · sp = u2 · · · up−1sp ∈ V and uv ∈ E.

3 When p = 2 this holds automatically.
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Then by equation (25) we have

�β((si)) ∈ fuv(Kv) =
{ ∞∑

i=1

di

βi
: di = ui, 1 � i � p − 1; dp = sp;

and t1 · · · tp � dn · · · dn+p−1 � t1 · · · tp, n � 1
}
.

So, Ku ⊆ ⋃
uv∈E fuv(Kv).

For the other inclusion of equation (26) we take �β((si)) ∈ ⋃
uv∈E fuv(Kv). Then there

exist uv ∈ E with u = u1 · · · up−1, v = v1 · · · vp−1 ∈ V such that �β((si)) ∈ fuv(Kv). This
implies that si = ui, 1 � i � p − 1; sp = vp−1 and

t1 · · · tp � sn · · · sn+p−1 � t1 · · · tp, n � 1.

So, �β((si)) ∈ Ku and we conclude that
⋃

uv∈E fuv(Kv) ⊆ Ku. Then equation (26) holds.
Similarly, one can check that

�β(Zt1···tp ) =
⋃
v∈V

Kv.

Hence, �β(Z1 · · · tp) is a graph-directed set generated by the IFS {(Ku)u∈V , (fuv)uv∈E}
(see [28]). We will finish the proof by showing that the IFS {(Ku)u∈V , (fuv)uv∈E} satisfies
the SSC.

Since β � βL, it follows from the proof of lemma 6.3 that for any (di) ∈ Zt1···tp we have

α1(β)α2(β) · · · � dndn+1 · · · � α1(β)α2(β) · · · for any n � 1.

By proposition 3.1 this implies that �β(Zt1···tp ) ⊆ [0, 1]. Let uv, uv′ ∈ E with u =
u1 · · · up−1, v = v1 · · · vp−1 and v′ = v′

1 · · · v′
p−1. Suppose vp−1 < v′

p−1. Then

p−1∑
i=1

ui

βi
+

vp−1

βp
+

∞∑
i=1

di

βp+i
�

p−1∑
i=1

ui

βi
+

vp−1 + 1

βp

<

p−1∑
i=1

ui

βi
+

v′
p−1

βp
+

∞∑
i=1

d ′
i

βp+i

for any (di), (d
′
i ) ∈ Zt1···tp . This yields fuv(Kv) ∩ fuv′(Kv′) = ∅. �

When p = 1 one can easily get the following lemma.

Lemma 6.5. Let t1 be an admissible block and let (αi(βL)) = t∞1 . Then for any β � βL the
set �β(Zt1) is a self-similar set satisfying SSC.

Now we give the Hausdorff dimension of Uβ,N for β ∈ [βL, β1].

Proposition 6.6. Let t1 · · · tp be an admissible block and let (αi(βL)) = (t1 · · · tp)∞, (αi(β1)) =
(t1 · · · t+

pt1 · · · t+
p)∞. Then for any β ∈ [βL, β1] the Hausdorff dimension of Uβ,N is given by

dimH Uβ,N = h(Zt1···tp )
log β

,

where h(Zt1···tp ) is the topological entropy of the subshift of finite type Zt1···tp .

Proof. By lemmas 6.2, 6.3 and theorem 3.5 it follows that for any β ∈ [βL, β1],

dimH Uβ,N = dimH �β(Zt1···tp ).
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By lemmas 6.4 and 6.5 �β(Z1 · · · tp) is a graph-directed set or a self-similar set satisfying
the SSC. Then the Hausdorff dimension of �β(Zt1···tp ) can be calculated via the topological
entropy of Zt1···tp (see [26]), i.e. dimH �β(Zt1···tp ) = h(Zt1···tp )/log β. �

Proof of theorem 2.6. Recall from (23) that βn is defined by

(αi(βn)) = (θ1 · · · θ2n−1p θ1 · · · θ2n−1p)∞.

Note by lemma 4.2 that t1 · · · t+
pt1 · · · t+

p is admissible. Then by proposition 6.6 it follows that
for any β ∈ [β1, β2]

dimH Uβ,N =
h(Zt1···t+

p t1···t+
p
)

log β
.

By taking β = β1 in the above equation and in proposition 6.6 it follows that h(Zt1···tp ) =
h(Zt1···t+

p t1···t+
p
). Hence, for any β ∈ [βL, β2] we have dimH Uβ,N = h(Zt1···tp )/log β. By

induction, we have

dimH Uβ,N = h(Zt1···tp )
log β

for any β ∈ [βL, βn]. Letting n → ∞ we have by proposition 3.1 that βn → βU . The authors
in [22] showed that the map β → dimH Uβ,N is continuous for β > 1. This establishes
theorem 2.6. �

Remark 6.7. Let Uβ,N denote the closure of Uβ,N . The authors in [22] showed for β > 1
that the set Uβ,N may be not closed, and the set Uβ,N \ Uβ,N is at most countable. Then for
β ∈ [βL, βU ],

dimH Uβ,N = dimH Uβ,N = h(Zt1···tp )
log β

.

7. Explicit formulae for the Hausdorff dimensions of Uβ,N

In this section we consider some examples for which the Hausdorff dimension of Uβ,N can be
calculated explicitly. An admissible interval [βL, βU ] is called a p-level admissible interval if
[βL, βU ] can be generated by an admissible block t1 · · · tp of length p. First we will consider
the case for the one-level admissible intervals.

Theorem 7.1. Given N � 3, let [βL, βU ] be an admissible interval generated by an admissible
block t1 ∈ {0, 1, · · · , N − 1}. Then �(N − 1)/2� � t1 � N − 2, and for any β ∈ [βL, βU ] the
Hausdorff dimension of Uβ,N is given by

dimH Uβ,N = log(2t1 + 2 − N)

log β
.

Proof. By definition 2.4 it follows that (αi(βL)) = t∞1 and (αi(βU)) = (θi(t1 + 1)). Since
t1 ∈ {0, 1, · · · , N − 1} is an admissible block, by definition 2.1 it gives that �(N − 1)/2� �
t1 � N − 2. By theorem 2.6 it follows that for any β ∈ [βL, βU ] the Hausdorff dimension of
Uβ,N is given by

dimH Uβ,N = h(Zt1)

log β
,

where Zt1 = {(di) : t1 � dn � t1, n � 1}. So, the theorem follows by an easy calculation that
h(Zt1) = log(t1 − t1 + 1) = log(2t1 + 2 − N). �
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If we take t1 = N − 2 in theorem 7.1, then we extend the main result of Kallós [20].
This can be seen by the following observation. Clearly, βL = N − 1. By definition 2.2 of the
generalized Thue–Morse sequence (θi(N − 1)) it follows that

(αi(βU)) = (θi(N − 1)) = (N − 1)1 0(N − 1) 0(N − 2) (N − 1)1 · · ·

> ((N − 1)0)∞ =
(
αi

(N − 1 +
√

N2 − 2N + 5

2

))
.

By proposition 3.1 this implies that βU > (N − 1 +
√

N2 − 2N + 5)/2.
Now we consider the Hausdorff dimension of Uβ,N for β in any two-level admissible

intervals.

Theorem 7.2. Given N � 2, let [βL, βU ] be an admissible interval generated by an admissible
block t1t2. Then �(N − 1)/2� � t1 � N − 1, t1 � t2 < t1, and for any β ∈ [βL, βU ] the
Hausdorff dimension of Uβ,N is given by

dimH Uβ,N = log(2t1 + 1 − N +
√

(2t1 + 1 − N)2 + 4(2t2 + 2 − N) ) − log 2

log β
.

Proof. Since t1t2 is an admissible block, by definition 2.1 it follows that

t1 � t1 � N − 1 and t1 � t2 < t1.

By theorem 2.6 it suffices to calculate the entropy of Zt1t2 .
Let G = {G, V, E} be an edge graph representing the shift of finite type Zt1t2 , where

the vertex set V = {t1, t1 + 1, · · · , t1} and the edge set E consists of all edges uv satisfying
t1t2 � uv � t1t2 for u, v ∈ V . Note that the entropy of Zt1t2 can be calculated via the
spectral radius of the adjacency matrix A of the edge graph G (see [26]), where A is of size
(t1 − t1 + 1) × (t1 − t1 + 1) given by

A =




0 0 · · · 0 1 · · · 1
1 1 1 · · · · · · · · · 1
1 1 1 1 · · · · · · 1
...

. . .
...

1 · · · · · · 1 1 1 1
1 . . . . . . . . . 1 1 1
1 · · · 1 0 · · · 0 0




.

Here the total number of zeros on the top and the bottom rows are both equal to t1 − t2 + 1 =
t2 − t1 + 1. Then

h(Zt1t2) = log
(2t1 + 1 − N) +

√
(2t1 + 1 − N)2 + 4(2t2 + 2 − N)

2
.

This completes the proof. �

The authors in [18, 25] showed that dimH Uβ,N = 0 when β = βc(N). This can also be
viewed by theorem 7.1 and 7.2.

Corollary 7.3. Given N � 2, for any β ∈ [GN, βc(N)] we have dimH Uβ,N = 0.

Proof. We split the proof into the following two cases.
Case I. N = 2k. By equations (2) and (3) it follows that

(αi(GN)) = (k(k − 1))∞ and (αi(βc(N))) = (θi(kk)).
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Figure 2. The Hausdorff dimension of Uβ,20 for β ∈ (βc(20), 20). In the left column
β is in the one-level admissible intervals; in the right column β is in the one-level and
two-level admissible intervals.

Hence, [GN, βc(N)] is an admissible interval generated by the admissible block k(k − 1). By
theorem 7.2 it follows that for β = βc(N) the set Uβ,N has zero Hausdorff dimension.

Case II. N = 2k + 1. By equations (2) and (3) one can check that [GN, βc(N)] is an
admissible interval generated by the admissible block k. Then by theorem 7.1 it follows that
for β = βc(N) we have dimH Uβ,N = 0. �

Example 7.4. Let N = 20. According to theorem 7.1 and theorem 7.2, we plot in figure 2 the
graph of the Hausdorff dimension dimH Uβ,20 of Uβ,20 for β ∈ (βc(20), 20). Clearly, the one-
level and two-level admissible intervals cover a large part of [βc(N), N). By theorem 2.5 the
union of all admissible intervals covers almost every point of (βc(N), N). Thus, the dimension
function dimH Uβ,N has a devil’s-staircase-like behaviour.
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